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Abstract

This paper presents a general framework for constructing and solving the multi-
variate static linear quadratic Gaussian (LQG) rational inattention tracking problem.
We interpret the nature of the solution and the implied action of the agent, and we
construct representations that formalize how the agent processes data. We apply this
infrastructure to the rational inattention price-setting problem, confirming the result
that a conditional response to economics shocks is possible, but casting doubt on a
common assumption made in the literature. We show that multiple equilibria and a
social cost of increased attention can arise in these models. We consider the extension
to the dynamic problem and provide an approximate solution method that achieves
low approximation error for many applications found in the LQG rational inattention
literature.
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1 Introduction

Models incorporating rational inattention, in which agents faced with limited information

processing capacity optimally allocate their attention across various economics shocks, can

accommodate a wide range of behavior that deviates from the rational expectations base-

line. They have been used to explain the sluggish responses to shocks observed for many

macroeconomic time series, they imply behavior similar to standard logit models when

applied to discrete choice problems, and they can result in discrete behavior by agents

even when the underlying economic shocks that influence the agent are continuously dis-

tributed.1 Despite their appeal, the technical challenges are such that explicit solutions have

not been found for most problems. In this paper we derive an explicit solution for and give a

comprehensive account of a foundational model: a multivariate static problem in which all

shocks are Gaussian and the objective function of the agent is quadratic. These so-called

static linear quadratic Gaussian problems are the most tractable class of rational inatten-

tion problems, but, even so, a full solution has been previously unknown. In addition,

the model considered in this paper serves as an important special case of more complex

dynamic models, and has been used to establish baseline results and provide intuition in

many applications. Along these lines, much of the analysis and interpretation that we will

develop in this paper will extend to the dynamic case.

Our first step is to lay a firm groundwork, since a variety of ways even to formulate the

problem have arisen. We begin by writing down our preferred formulation, following Sims

(2003) and Sims (2010), and explaining its relation to the classic signal extraction prob-

lem. In short, an agent must choose the optimal posterior covariance matrix for a vector of

shocks given a loss function and subject to a constraint on how much uncertainty can be

1 For sluggishness in macroeconomic series, see the price-setting model of Maćkowiak and Wiederholt
(2009), the permanent income model of Sims (2003), or the numerous references contained in Sims (2010).
For rational inattention as applied to discrete choice models, see Matêjka and McKay (2015) or Steiner et al.
(2017). For discrete actions in continuous settings, see Jung et al. (2015).
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reduced relative to their prior. Our formulation can include an arbitrary number of shocks,

potentially correlated, and can incorporate the information constraint in terms of a fixed

quantity of information processing capacity or a fixed marginal cost associated with pro-

cessing additional information. Throughout the paper, we clarify the relationship between

this and alternative statements of the problem. In particular, we will take a closer look at

the often-used formulation in which agents choose the noise variance of "signals" received

by the agent, which, we will argue, can encourage misleading comparisons with the signal

extraction problem.

After establishing the problem, we immediately present the general solution in two theo-

rems. We show that the crucial element in constructing and understanding the solution lies

in recognizing that the agents are not just choosing how much posterior uncertainty about

shocks is optimal, they are also choosing the form of the posterior uncertainty. An illumi-

nating example of this is given in Sims (2010): if a rationally inattentive agent wishes to

track the sum of 𝑛 random variables, then they will process information so as to make their

posterior uncertainty about those random variables negatively correlated, even if the vari-

ables themselves are independent. We show how to construct what we call the canonical

synthetic shocks (or just “canonical shocks”), specific linear combinations of the original,

or “fundamental”, shocks that capture the optimal form of posterior uncertainty chosen by

a rationally inattentive agent. Understanding these canonical shocks is the key to solving

the problem and understanding the implications of the solution, and their careful definition

is one contribution of this paper.

While the fundamental shocks that exist as part of the formulation of the economic model

may appear natural to the modeler, we argue that it is instead the canonical shocks that

are natural for the agent within the model. We show that the canonical shocks represent

the separate and distinct elements of uncertainty that actually matter to the agent. In fact,

the solution to the problem is exactly constructed by transforming the problem into the
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“canonical space”, and we provide a straightforward intuition of this by geometrizing the

problem in terms of ellisoids representing uncertainty. Then, given the solution, the agent’s

action - their posterior estimate of each individual component of the canonical shock -

turns out to be a simple Bayesian update, a weighted average of the agent’s prior for that

component and their understanding of the incoming data. Moreover, using the canonical

shocks we can construct a representation of the incoming data as understood by the agent

that gives an intuitive sense of how the agent produced their posterior through information

processing.

While the form these representations take is consistent with the concept of an “observation”

or “signal” as in a signal extraction problem, a crucial point is that any given representation

is simply a device that assists us in characterizing the agent’s decision. Representations

are not unique, and we show how to construct the class of representations that would be

valid for a given problem. We characterize the useful subset of these representations as

“feasible”, and show that all feasible representations are only transformations of the repre-

sentation constructed in terms of the canonical shocks. Importantly, we show that whereas

this canonical representation always exists, in most cases there does not exist a feasible

representation in terms of the “fundamental” shocks. This underscores that while the fun-

damental shocks may be of interest to the modeler, they are not the objects of interest to

the agent. Finally, we present the “representation form” of the problem, and show that it

is less useful than the canonical form. We also describe the related form of the problem,

mentioned above, in which agents choose the noise variance of “signals”, and we show

how issues can arise through the incautious application of this last formulation.

As an application, we consider the rational inattention price-setting problem of Maćkowiak

and Wiederholt (2009). We start by showing how to cast the static case of their problem,

including their “independence assumption”, in the terms of this paper and then solve it

along with three new formulations that we introduce. In contrast to the involved derivations
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that previous papers have often had to rely on, the exact solution to the general problem

that we derive in this paper yields the results immediately. In comparing these solutions,

we find that the key result of Maćkowiak and Wiederholt (2009) - a conditional response

to different types of fundamental shocks - survives dropping the independence assumption,

and we also present new results, including the introduction of multiple equilibria and the

possibility that additional information processing capacity actually increases social costs.2

The more general dynamic RI-LQG tracking problem remains unsolved by the methods of

this paper. Despite this, many key concepts - including the canonical synthetic shocks, the

agent as a Bayesian updater, and our treatment of representations - do apply in the dynamic

problem. We present this problem and show that the sequential application of the static

solution combined with iteration of the dynamic transition equation approximates the full

dynamic solution, and that the approximation error will be low as long as the parameter

capturing the marginal cost of attention is close to zero. Since this condition holds in most

existing applications of dynamic RI-LQG tracking problems in the literature, we conclude

that the static approximation is a useful tool, particularly since no analytic solution so far

exists and numerical solutions can be difficult to obtain.

This paper is most closely related to Sims (2003) and Sims (2010), to which we owe our

basic formulation for the class of RI-LQG tracking problems. Additionally, in these two

papers can be found the seeds of many of the concepts we make explicit and fully de-

velop here for the static case. This paper is also related and complementary to Matejka

et al. (2017), as both of our papers provide explicit solutions for special cases of the dy-

namic RI-LQG tracking problem. Whereas we consider the static version of the problem

with multiple targets and arbitrary correlations and present an approximate solution in the

dynamic case, they consider the dynamic problem with a single ARMA(p,q) target.

2 The latter result recalls Morris and Shin (2002), except that here the incompleteness of information is
endogenous.
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2 Preliminaries

Here we introduce a few mathematical results related to information theory and generalized

eigenvalue problems; these will be used throughout the rest of the paper.

2.1 Information theory

It is most transparent to introduce the concepts of information theory for the case of discrete

random variables, and so in what follows we will let 𝑋 and 𝑌 denote random variables with

probability mass functions 𝑃𝑋 and 𝑃𝑌 . For the results in the paper, we will be making use

of an extension to the continuous case known as differential entropy. Although this exten-

sion is broadly consistent with discrete case, there are subtleties that must be accounted for;

we point out a few examples of this below.

2.1.1 Entropy

The basic quantity in information theory is entropy, a measure of the uncertainty associated

with a random variable. Entropy is defined as:3

ℎ(𝑋) = −𝐸[log(𝑃 (𝑋))]

Entropy is typically measured in “bits”, where a bit is the quantity of uncertainty associated

with a Bernoulli trial with probability of success 𝑝 = 0.5. Thus a bit is a quantification of

the uncertainty resolved by the realization of a single coin flip. We can also define joint en-

tropy ℎ(𝑋, 𝑌 ) = −𝐸[log(𝑃 (𝑋, 𝑌 ))] and conditional entropy ℎ(𝑋 | 𝑌 ) = −𝐸[log(𝑃 (𝑋 |

𝑌 ))]. Conditional entropy can be thought of as the uncertainty about 𝑋 that remains after

3 Often entropy of a discrete random variable is denoted 𝐻(𝑋) and entropy of a continuous random
variable, known as differential entropy, is denoted ℎ(𝑋). To simplify notation, we will use ℎ(·) for both
cases.
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observing 𝑌 . The “chain rule” of entropy states ℎ(𝑋, 𝑌 ) = ℎ(𝑋) +ℎ(𝑌 |𝑋); in words, the

uncertainty about 𝑋 and 𝑌 together is the uncertainty about 𝑋 plus the uncertainty about

𝑌 that remains after observing 𝑋 .

If 𝑋 ⊥ 𝑌 , then 𝑋 does not resolve any uncertainty about 𝑌 and so ℎ(𝑌 |𝑋) = ℎ(𝑌 ). Then

by the chain rule ℎ(𝑋, 𝑌 ) = ℎ(𝑋) + ℎ(𝑌 ), so that the uncertainty about 𝑋 and 𝑌 together

is just the sum of the uncertainty about 𝑋 and 𝑌 separately. In the degenerate case that

𝑋 = 𝑌 , observing 𝑋 fully resolves the uncertainty about 𝑌 . If 𝑋 and 𝑌 are discrete, then

ℎ(𝑌 |𝑋) = 0 and so ℎ(𝑋, 𝑌 ) = ℎ(𝑋) + ℎ(𝑌 |𝑋) = ℎ(𝑋). However, in the continuous

case, ℎ(𝑌 |𝑋) = −∞; this is an example of one subtlety that arises in information theory

when moving from discrete to continuous random variables.

2.1.2 Mutual Information

Mutual information is a measure of the information about one random variable contained

in another. Formally:

𝐼(𝑋;𝑌 ) = ℎ(𝑋) − ℎ(𝑋|𝑌 )

This can be understood as the quantity of uncertainty about 𝑋 resolved after the observation

of 𝑌 . For example, if 𝑋 ⊥ 𝑌 , then ℎ(𝑋|𝑌 ) = ℎ(𝑋) and 𝐼(𝑋;𝑌 ) = 0. This is true in both

the discrete and continuous cases.

At the other extreme, if 𝑋 = 𝑌 then in the discrete case ℎ(𝑋|𝑌 ) = 0 and so 𝐼(𝑋;𝑌 ) =

ℎ(𝑋). Thus observing 𝑌 resolves all uncertainty about 𝑋 , and since the “quantity” of

uncertainty about 𝑋 is given by the entropy ℎ(𝑋), this is also the quantity of mutual in-

formation. However, in the continuous case, ℎ(𝑋|𝑌 ) = −∞ so that 𝐼(𝑋;𝑌 ) = ∞. In

fact, this too is an intuitive result reflecting the fact that a continuous random variable can

take on an uncountably infinite number of values. By mapping each possible value to a
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“message” of arbitrary content, it is clear that we can transmit as much information as we

like through the realization of a continuous random variable.

2.1.3 Information theoretic results

Here we state some well-known properties of entropy and mutual information; see for

example Cover and Thomas (2006) for details.

Property 1: Entropy is invariant under translation. Let 𝑊,𝑋 be arbitrary random vectors

and let 𝑐 be a 𝑊 -measurable function. Then:

ℎ(𝑋 + 𝑐(𝑊 ) | 𝑊 ) = ℎ(𝑋 | 𝑊 )

Corollary: Mutual information is invariant under translation by a constant.

Property 2: Conditioning weakly reduces entropy. Let 𝑊,𝑋 be arbitrary random vectors.

Then:

ℎ(𝑋) ≥ ℎ(𝑋|𝑊 )

Property 3: Mutual information is invariant under invertible transformations. Let 𝑊,𝑋, 𝑌

be arbitrary random vectors and let 𝑓 , 𝑔 be bijective functions. Then:

𝐼(𝑋;𝑌 | 𝑊 ) = 𝐼(𝑓(𝑋), 𝑔(𝑌 ) | 𝑊 )

Corollary: As a consequence of properties 1 and 3, if 𝐹,𝐺 are nonsingular conformable

matrices and 𝑐, 𝑑 are constants, then:

𝐼(𝑋;𝑌 | 𝑊 ) = 𝐼(𝐹𝑋 + 𝑐,𝐺𝑌 + 𝑑 | 𝑊 )
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Property 4: Let 𝑋 be a random vector, and consider all possible distributions for 𝑋 such

that Var(𝑋) = 𝑃 is fixed. Then the differential entropy is maximized when 𝑋 is jointly

Gaussian.

Property 5: Let 𝑋, 𝑌 be jointly Gaussian random vectors of dimension 𝑛, possibly condi-

tional on some information ℐ−, and let 𝑉 𝑎𝑟(𝑋 | ℐ−) = 𝑃− and 𝑉 𝑎𝑟(𝑋 | ℐ−, 𝑌 ) = 𝑃+.

Then:

ℎ(𝑋 | ℐ−) =
1

2
log𝑏 |2𝜋𝑒𝑃−|

ℎ(𝑋 | ℐ−, 𝑌 ) =
1

2
log𝑏 |2𝜋𝑒𝑃+|

𝐼(𝑋, 𝑌 | ℐ−) = ℎ(𝑋 | ℐ) − ℎ(𝑋 | ℐ−, 𝑌 ) =
1

2
(log𝑏 |𝑃−| − log𝑏 |𝑃+|)

We have not specified the base of the logarithm in Property 5, since different bases simply

correspond to different measures of mutual information; for example, if the base is 2 then

mutual information is measured in bits, whereas if the base is 𝑒 then mutual information is

measured in nats.

2.2 Generalized eigenvalue problems

The generalized eigenvalue problem for two matrices 𝐴,𝐵 is to find scalars 𝜆𝑖 and vectors

𝑟𝑖 such that the following equation holds:4

(𝐴− 𝜆𝑖𝐵)𝑟𝑖 = 0, 𝑖 = 1, . . . 𝑛

In what follows, we will be interested in the specialization in which 𝐴,𝐵 are symmetric

positive semidefinite matrices. In fact, we will usually consider cases in which 𝐵 is positive

definite, and then since 𝐵 is nonsingular it is easy to see that left multiplication by 𝐵−1

4 In this section, we use the notation 𝜆 and Λ differently than we will in the rest of the paper.
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yields a standard eigenvalue problem (𝐵−1𝐴 − 𝜆𝑖𝐼)𝑟𝑖 = 0. However it turns out that

applying this transformation often obscures the form of the solution since 𝐵−1𝐴 may not

be positive semidefinite and is generally not even symmetric. The matrix 𝐴− 𝜆𝐵 is often

referred to as a matrix pencil and denoted by the pair (𝐴,𝐵).

For positive semidefinite matrices 𝐴,𝐵, the generalized eigenvalue problem can be solved

via simultaneous diagonalization of 𝐴,𝐵 by congruence. We state this result as a lemma.

Lemma 1:5 If 𝐴 and 𝐵 are real symmetric positive semidefinite matrices of order 𝑛 and

rk(𝐵) = 𝑟, then:

a. There exists a nonsingular matrix 𝑆 such that 𝐵 = 𝑆 ′(𝐼𝑟 ⊕ 0𝑛−𝑟)𝑆 and 𝐴 = 𝑆 ′Λ𝑆,

in which Λ is nonnegative diagonal and rk(𝐴) = rk(Λ).

b. Defining 𝑅 ≡ 𝑆−1 =

[︂
𝑟1 . . . 𝑟𝑛

]︂
and Λ = diag({𝜆𝑖}𝑛𝑖=1), the pairs (𝜆𝑖, 𝑟𝑖) solve

the generalized eigenvalue problem associated with the matrix pencil (𝐴,𝐵). The

scalars 𝜆𝑖 are called generalized eigenvalues and the vectors 𝑟𝑖 are called generalized

right eigenvectors.

c. If 𝐵 is positive definite, there is a unique factorization 𝑀 ′𝑀 = 𝐵, where 𝑀 is

nonsingular. Defining 𝐿 = 𝑀−1, we can compute the eigendecomposition 𝑄Λ𝑄′ =

𝐿′𝐴𝐿. Then this matrix Λ along with 𝑆 = 𝑄′𝑀 satisfy (a) and (b).

An important element of generalized eigenvalue problems is that the matrix containing

generalized eigenvectors is not orthogonal with respect to the usual inner product, i.e. in

general 𝑅′𝑅 ̸= 𝐼 . However, if 𝐵 is positive definite, we can define a valid inner product

induced by 𝐵 as ⟨𝑥, 𝑦⟩𝐵. That the generalized eigenvectors are 𝐵-orthogonal, i.e. that

𝑅′𝐵𝑅 = 𝐼 , follows directly from part (a) of the lemma.

Although the generalized eigenvalue problem will be crucial in several ways in the solu-

tion to the rational inattention problem considered in this paper, one important use can be

5 Proofs of all results in this paper are given in Appendix A.
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immediately shown to simplify the mutual information of Gaussian random vectors.

Property 6: Let 𝑋, 𝑌, ℐ−, 𝑃−, 𝑃+ all be defined as in Property 5. Then we can write:

𝐼(𝑋, 𝑌 | ℐ−) =
1

2

𝑛∑︁
𝑖=1

log𝑏

1

𝑛𝑖

where 𝑛𝑖 denote the generalized eigenvalues of the matrix pencil (𝑃+, 𝑃−).6 Importantly,

this property applies to both static and dynamic rational inattention problems.

3 Problem

Rational inattention problems fall into the larger class of problems in which agents must

make decisions under imperfect information. In classical imperfect information problems,

the information structure of the economy is often exogenously imposed. The rational inat-

tention approach, introduced by Sims (2003), is one way to endogenize information imper-

fections as the rational behavior of agents that face constraints on the extent to which they

can process and translate information into actions, even in the case that the information

itself is freely available.

3.1 Exogenous information imperfections

We begin by briefly describing the classical signal extraction problem, one of the most

common models of imperfect information, in which the characteristics of the signal and

noise are exogenous. This is valuable because it will turn out that the rational inattention

problem can be cast in the form of specific signal extraction problems. However, as we

will show below, the signal extraction formulation of the rational inattention problem is not

unique. A more fundamental representation of the rational inattention problem is in terms
6 We use the notation 𝑛𝑖 instead of 𝜆𝑖 in order to make a notational connection with the following

sections.
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of a generalization of signal extraction problems known as tracking problems, which we

also briefly introduce. This will allow us, in the next section, to describe the specific appli-

cation to rationally inattentive tracking problems, and to present the problem and solution

in the further special case known as the linear quadratic Gaussian (LQG) case.

3.1.1 Signal extraction problems

Given an unknown random vector7 of interest 𝛼 and a given observation vector 𝑦 = ℎ(𝛼, 𝜀),

where 𝜀 is an independent random vector representing contaminating noise and ℎ is some

measurable function, a signal extraction problem is to select a second function 𝑎(𝑦) such

that the expected distance between 𝛼 and 𝑎(𝑦) is “small” according to some distance, or

loss, function 𝑑. The signal extraction problem can be formulated as:

min
𝑎(𝑦)

∫︁
𝑑(𝛼, 𝑎(𝑦))𝑓(𝛼|𝑦)𝑑𝛼

If loss is quadratic in 𝛼 − 𝑎(𝑦), so that the problem is to minimize the (weighted) mean

square error, then the solution is well known to be the conditional expectation 𝑎(𝑦) = 𝐸[𝛼 |

𝑦]. If it is also the case that 𝑦 and 𝛼 are jointly Gaussian, then it is similarly well known

that the conditional expectation is a linear function, 𝑎(𝑦) = 𝑎0 + 𝐾𝑦.

The well-known Kalman filter recursively solves a dynamic version of the signal extraction

problem in which the loss is quadratic, all variables are jointly Gaussian, and the vector

of interest 𝛼 follows a linear transition law. This case is referred to as a linear quadratic

Gaussian (LQG) filtering problem. Because the static signal extraction problem introduced

above is a special case of the recursive problem, we will also refer to it as an LQG signal

extraction problem.

7 We derive all results in terms of random vectors, but everything remains valid for the 1-dimensional
random variable case.
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3.1.2 Tracking problems

To more clearly formulate the rational inattention problem and its solution below, we dis-

tinguish between a signal extraction problem and a “tracking” problem. Here, a tracking

problem is a generalization of a signal extraction problem in which an observation vector

is not a given fundamental component. Instead, the problem is:

min
𝑓()

∫︁
𝑑(𝛼, 𝑎)𝑓(𝛼, 𝑎 | ℐ)𝑑𝑎𝑑𝛼

such that 𝑓 is a valid joint density function for (𝛼, 𝑎) and is potentially conditional on some

given prior information set ℐ. We refer to 𝛼 as the “target” or “state” and 𝑎 as the “action”.8

In the case that the loss is quadratic in 𝛼−𝑎 and the variables are jointly Gaussian, we refer

to this as an LQG tracking problem.

If there are no constraints, then the solution is to choose 𝑓 such that 𝑎 = 𝛼 with probability

1. Then 𝑓 is degenerate and expected losses are zero. To specify an interesting tracking

problem, some constraint must be added. For example, the signal extraction problem above

is a specialization of the tracking problem in which a constraint is placed on the form of 𝑎,

so that 𝑎 must be a measurable function of an exogenous observation 𝑦.

For what follows, it is notationally convenient to rewrite the tracking problem as min𝑎 𝐸[𝑑(𝛼, 𝑎) |

ℐ] where it is understood that the expectation is with respect to the joint distribution of

(𝛼, 𝑎) conditional on the marginal distribution of 𝛼 and the prior information ℐ, and that

the minimization is either over that joint distribution directly or, equivalently, over the con-

ditional distribution of 𝑎 | 𝛼, ℐ.

8 It may be useful to have in mind some sport in which a player must track the position of a ball (the
target) in order to place their foot so that it will meet the ball (their action). Their action depends on where
they perceive the ball to be, and they wish to make that perception as close as possible to where the ball
actually is.
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3.2 Endogenizing imperfect information through rational inattention

In rational inattention problems, all information is generally supposed to be freely observ-

able save for a constraint on the information processing capacity of the agent. If the relevant

information can be expressed as a random vector 𝛼, then we will write the agent’s percep-

tion of that information after processing as 𝑎+. Because the agent wishes to make 𝑎+ as

close to 𝛼 as possible given some constraint, this is often naturally formulated in terms of

a tracking problem, and so we will refer to the 𝛼 as the target and 𝑎+ as the action.

The constraint in a rational inattention problem is formalized using the mutual information

between target and action, 𝐼(𝛼, 𝑎+). As described above, this quantification of “information

processed” has various desirable properties and a natural interpretation: it is the quantity

of uncertainty about the target resolved by the agent in the process of taking their action.

There are two primary ways of formulating this constraint. The first allows agents a fixed

processing capacity 𝜅 and requires that 𝐼(𝛼, 𝑎+) ≤ 𝜅; we will refer to this as the “fixed

capacity” or “fixed 𝜅” formulation. The second allows agents to access any amount of in-

formation processing capacity at a fixed marginal cost 𝜆*; we will refer to this as the “fixed

marginal cost” or “fixed 𝜆” formulation. As we will show below, these approaches lead to

largely similar statements of the problem and solution, but they have different implications

in comparative statics exercises.

3.3 Rational inattention tracking problems

The rational inattention tracking problem is:9

min
𝑎+

𝐸 [𝑑(𝛼, 𝑎+) | ℐ−] + 𝜆*𝐼(𝛼, 𝑎+ | ℐ−)

9 See Sims (2010) for more details regarding this formulation of the problem.
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where 𝜆* is interpreted either as a cost parameter or as a Lagrange multiplier for a constraint

𝐼(𝛼, 𝑎+ | ℐ−) ≤ 𝜅; these interpretations correspond respectively to the fixed marginal cost

and fixed capacity constraints introduced earlier, and we will provide an explicit solution

for each case. Note that here and in what follows we will denote the prior information set

as ℐ− and the action as 𝑎+ to emphasize the processing of new information. The function

𝐼(𝛼, 𝑎+ | ℐ−) is the conditional Shannon mutual information, introduced above.

In general this is a difficult problem to solve. However, if the loss is quadratic and 𝛼 is

Gaussian, then an analytic solution exists. As described in Sims (2003) and Sims (2010), a

solution to this problem makes (𝛼, 𝑎+) | ℐ− jointly Gaussian and we can write 𝛼 = 𝑎+ +𝜂,

where 𝑎+ ⊥ 𝜂. Writing 𝛼 | ℐ− ∼ 𝑁(𝑎−, 𝑃−), we can then specify the components:

𝑎+ | ℐ− ∼ 𝑁(𝑎−, 𝑃− − 𝑃+)

𝜂 | ℐ− ∼ 𝑁(0, 𝑃+)

𝛼 | ℐ−, 𝑎+ ∼ 𝑁(𝑎+, 𝑃+)

Then it is clear that this optimal action is a conditional expectation: 𝑎+ = 𝐸[𝛼 | ℐ+], where

ℐ+ denotes the posterior information, with ℐ− ⊆ ℐ+. This of course immediately recalls

the solution to the signal extraction problem. A crucial point to note at this stage, however,

is that we have not been explicit about the contents of the posterior information set, and

we have made no mention of an observation or signal vector. In fact, we will develop the

complete formulation and solution to this problem with no mention of such a vector, and

the fact that we can do this makes the tracking problem, rather than the signal extraction

problem, fundamental. Nonetheless, an analogy with the signal extraction problem can be

useful as an aid to interpretation, and so we will make the analogy precise and draw out its

strengths and weaknesses as we proceed.

Specification of 𝑎+ as a conditional expectation has not fully solved the problem, but it has

reduced the optimization space and it will allow us to present a simpler formulation. First,
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we can simplify 𝐸[𝑑(𝛼, 𝑎+) | ℐ−] = 𝐸[(𝛼−𝑎+)′𝑊 (𝛼−𝑎+) | ℐ−] = 𝑡𝑟(𝑊𝑃+) where 𝑊 is

a positive semidefinite matrix defining the loss function. Second, from Property 5, we have

𝐼(𝛼, 𝑎+ | ℐ−) = 1
2

(log𝑏 |𝑃−| − log𝑏 |𝑃+|).10 Finally, for notational convenience we write

𝜆 = 𝜆*/(2 ln 𝑏) to eliminate a constant term from this form of the information constraint,

and we will often refer to 𝜆 as the marginal cost of attention.

This leads us to what might be termed the canonical formulation of the static rational inat-

tention linear quadratic Gaussian (RI-LQG) tracking problem. This formulation is a static

version of the dynamic problems described in Sims (2003) and Sims (2010).

Definition 1: The static RI-LQG tracking problem represented by the tuple (𝑊,𝑎−, 𝑃−) is:

min
𝑃+

𝑡𝑟(𝑊𝑃+) + 𝜆(ln |𝑃−| − ln |𝑃+|) (1)

s.t. 𝛼 | ℐ− ∼ 𝑁(𝑎−, 𝑃−)

𝑃+ ≥ 0

𝑃− − 𝑃+ ≥ 0

where the notation 𝑃−−𝑃+ ≥ 0 indicates that the difference of these matrices must be pos-

itive semidefinite. We will generally assume that the target 𝛼 is an 𝑛× 1 vector distributed

𝑁(𝛼̄,Ω) where rank Ω = 𝑛. Finally, we will refer to 𝛼 and 𝑎+ as the “fundamental” target

and action, since we will extensively deal also with transformations of these vectors that

we will call “synthetic” targets and actions.

We have thus reduced the problem from optimization over the space of random variables to

optimization over the cone of positive semidefinite matrices, and we note that any solution

𝑃+ determines a specific information set ℐ+ that will be described in more detail below.

The problem as stated has two “positive semidefiniteness” constraints. The first requires

10 We have left the base of the logarithm unspecified here; in examples we will generally assume infor-
mation to be measured in bits.
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that 𝑃+ is a valid covariance matrix. Given that 𝑃− is full rank, the objective function

grows without bound as the smallest eigenvalue of 𝑃+ goes to zero, so it is clear that in any

solution 𝑃+ will be positive definite and this first constraint will not be binding in practice.

The second constraint, sometimes termed the “no-forgetting” constraint, is often binding,

and it will turn out that handling that case is central to the full solution of the problem. This

latter constraint is necessary because the problem trades off posterior uncertainty among the

components of the target, so if the loss matrix 𝑊 assigns little weight to some component

then it can be optimal to assign that component more posterior uncertainty than existed

prior uncertainty. Because the introduction of new information cannot achieve this result,

the constraint is necessary. Mechanically, this constraint guarantees that our formulation of

𝑎+ | ℐ−, above, is valid.

4 Solution

In this section, we describe the solution to the static RI-LQG tracking problem presented

above in Definition 1. To begin with, we will work with the fixed marginal cost formulation,

and then show the extension to the fixed capacity case.

4.1 Solution to the static LQG-RI tracking problem

It is easy to check that the first order condition to the problem yields:

𝑃−1
+ = 𝑊/𝜆 (2)

We cannot generally write the first order condition in terms of 𝑃+, because we have not

required 𝑊 to be nonsingular.11 Despite this, if the positive semidefiniteness constraints

11 For this reason it is sometimes more convenient to work in terms of precision matrices rather than
covariance matrices. However, when possible we will present results in terms of covariance matrices.
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are not binding, then this yields the solution to the static RI-LQG tracking problem. In the

general case when the constraints may be binding, particularly the no-forgetting constraint,

the solution is more complex. Before presenting the full solution in Theorem 1, some

preliminaries are provided in Lemma 2.

Lemma 2: Assume that the loss matrix 𝑊 is positive semidefinite and the prior covariance

matrix 𝑃− is positive definite. Then considering the matrix pencil (𝑊,𝑃−1
− ) we have the

following results:

a. The Cholesky factor 𝐿𝐿′ = 𝑃− is nonsingular, so that 𝑀 = 𝐿−1 exists.

b. Define 𝑉 = 𝐿′𝑊𝐿. This matrix is positive semidefinite, and its eigendecomposition

can be written 𝑄𝐷𝑄′ = 𝑉 .

c. The matrix pencil can be simultaneously diagonalized by congruence so that 𝑊 =

𝑆 ′𝐷𝑆 and 𝑃−1
− = 𝑆 ′𝐼𝑆, where 𝑆 = 𝑄′𝑀 .

d. The generalized eigenvalues of the matrix pencil, denoted 𝑑𝑖, are the diagonal el-

ements of the matrix 𝐷. It will be convenient to always arrange the generalized

eigenvalues in nonincreasing order.

e. The generalized right eigenvectors of the matrix pencil, denoted 𝑟𝑖, are the columns

of the matrix 𝑅 = 𝑆−1.

Theorem 1: The solution to the fixed marginal cost static RI-LQG tracking problem is

given by:

𝑃+ = 𝑅𝑁+𝑅′ (3)

where 𝑁+ is a diagonal matrix with entries 𝑛+
𝑖 . These diagonal elements are defined by

𝑛+
𝑖 = 1/𝛿+𝑖 , where 𝛿+𝑖 = max{𝑑𝑖/𝜆, 1} and 𝑑𝑖 and 𝑅 are as defined in Lemma 2. As a

consequence of assuming that the generalized eigenvalues 𝑑𝑖 are in nonincreasing order,
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the values 𝑛+
𝑖 will be in nondecreasing order. In the following two corollaries, we state

an even more explicit solution for the useful special case in which the loss matrix is rank

one and we show how the elements of the solution are related to a matrix pencil of interest,

(𝑃+, 𝑃−).

Corollary 1: If the loss matrix is rank one then we can decompose it as 𝑊 = 𝑤𝑤′, with 𝑤

an 𝑛× 1 vector, and the solution to the fixed marginal cost static RI-LQG tracking problem

can be written:

𝑃+ = 𝑃− − 1 − 𝑛+
1

‖𝐿′𝑤‖2𝑃−𝑊𝑃−

Corollary 2: Let 𝑃+ denote the posterior covariance matrix solving the static RI-LQG

tracking problem and let 𝑠′𝑖 denote the 𝑖-th row of the matrix 𝑆, defined in Lemma 2. Then

𝑛+
𝑖 is the generalized eigenvalue of the matrix pencil (𝑃+, 𝑃−) associated with the left

generalized eigenvector 𝑠′𝑖.

In order to solve the fixed capacity version of the problem, it is useful to first define a new

quantity 𝑟 as the integer such that 𝑑𝑟 > 𝜆 ≥ 𝑑𝑟+1 and define 𝑑0 = ∞ and 𝑑𝑛+1 = −∞ to

encompass degenerate and full rank solutions.

Theorem 2: The solution to the fixed capacity static RI-LQG tracking problem with 𝜅

measured in base 𝑏 is as given in Theorem 1, except that 𝜆 is interpreted as a shadow cost.

The value of 𝜆 that solves the problem is:

𝜆 =

[︃
𝑏−2𝜅

𝑟∏︁
𝑖=1

𝑑𝑖

]︃ 1
𝑟

(4)

as long as 𝜅 > 0 and is undefined otherwise. The quantity 𝑏 is the base of the logarithm that

defines the unit of information (𝑏 = 2 if information is measured in bits), and the quantity 𝑟

is defined as above, but now is determined in concert with 𝜆. The procedure for computing
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𝑟 and 𝜆 is as follows:

a. Set 𝑟 = 𝑛

b. Compute 𝜆 according to equation (4), given 𝑟.

c. If 𝑑𝑖 > 𝜆, 𝑖 = 1, . . . , 𝑟 then this pair (𝑟, 𝜆) describes the solution. Otherwise, set

𝑟 = 𝑟 − 1 and repeat from step 2.

Corollary: For the fixed capacity static RI-LQG tracking problem:

a. The shadow cost 𝜆 is monotonic decreasing in 𝜅, for 𝜅 ∈ (0,∞).

b. The quantity 𝑟 is nondecreasing in 𝜅.

4.1.1 Canonical synthetic target

Before proceeding with implications of these theorems, we first define a new random vector

that is instrumental in understanding the solution to the static RI-LQG tracking problem.

Definition 2: We define the canonical synthetic target (briefly the canonical target) as the

vector 𝛽𝑐 = 𝑆𝛼, where 𝑆 is the matrix of left generalized eigenvectors from the second

Corollary to Theorem 1.

The canonical synthetic target is a transformation of the target vector into a new set of

coordinates. The importance of this transformation and insight into the new coordinate

space is given in the next lemma.

Lemma 3: The canonical synthetic target 𝛽𝑐, satisfies the following:

a. 𝛽𝑐 | ℐ+ ∼ 𝑁(𝑏𝑐,+, 𝑁
+) where 𝑏𝑐,+ = 𝑆𝑎+.

b. 𝛽𝑐 | ℐ− ∼ 𝑁(𝑏𝑐,−, 𝐼) where 𝑏𝑐,− = 𝑆𝑎−.

c. 𝐸[(𝛼− 𝑎+)′𝑊 (𝛼− 𝑎+) | ℐ−] = 𝐸[(𝛽𝑐 − 𝑏𝑐,+)′𝐷(𝛽 − 𝑏𝑐,+) | ℐ−]

d. 𝐼(𝛼, 𝑎+ | ℐ−) = 𝐼(𝛽𝑐, 𝑏𝑐,+ | ℐ−)
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e. 𝐼(𝛽𝑐, 𝑏𝑐,+ | ℐ−) =
∑︀𝑛

𝑖=1 𝐼(𝛽𝑖,𝑐, 𝑏𝑖,𝑐,+ | ℐ−) where 𝛽𝑐 = (𝛽1,𝑐, · · · , 𝛽𝑛,𝑐)
′

Parts (c) and (d) demonstrate that the objective function can be rewritten entirely in terms

of 𝛽𝑐. It is because of these results that we call 𝛽𝑐 a “synthetic” target. As we will show

later, there are many transformations that allow us to reformulate the problem in terms of

a variety of synthetic target vectors. Parts (b), (c), and (e) demonstrate that the elements

of the canonical synthetic target are separable with respect to prior uncertainty, the loss

function, and mutual information; this is the essence of the new coordinate space and,

because such a vector can always be constructed, we refer to this as the canonical synthetic

target. Moreover, part (a) demonstrates that the elements of the canonical synthetic target

remain separable in the posterior.

Part (c) furnishes us an intuition for the generalized eigenvalues 𝑑𝑖: they define the loss

function as associated with the canonical synthetic target. Because 𝐷 is diagonal, the

element 𝑑𝑖 captures the full loss associated with the element 𝛽𝑖,𝑐, and we thus refer to the

elements 𝑑𝑖 as the canonical loss weights.

We are now in a position to state some results following from Theorems 1 and 2. These

results will equally apply to the fixed 𝜆 or fixed 𝜅 formulations, unless otherwise noted.

4.1.2 Rank of the solution

Definition 3: We refer to 𝑟 as the rank of the solution to the static RI-LQG tracking prob-

lem, and we say that the solution is full rank if 𝑟 = 𝑛.

Lemma 4:

a. 𝑟 = rk(𝑃−−𝑃+), so the solution is full rank if and only if the no-forgetting constraint

is not binding. If the solution is full rank, then the solution is given by the first-order

condition.

b. 𝑟 ≤ rk(𝑊 ), so if 𝑊 is singular then the solution cannot be full rank.
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c. 𝑟 is the number of elements for which the loss in utility caused by increased uncer-

tainty, as measured by the canonical loss weight 𝑑𝑖, is greater than the marginal cost

of additional attention, as measured by 𝜆.

d. 𝑟 is the number of elements in the canonical synthetic target for which the agent

processes new information.

e. In the fixed 𝜅 formulation, if 𝜅 > 0 and rk(𝑊 ) ≥ 1, then 𝑟 ≥ 1. This is in contrast

to the fixed 𝜆 case, which may have 𝑟 = 0 even if 𝑊 is full rank.

4.1.3 Information capacity allocations

Definition 4: The total quantity of information capacity used by the agent, measured in

base 𝑏, is:

𝜅 ≡ 𝐼(𝛼, 𝑎+ | ℐ−) =
1

2

𝑟∑︁
𝑖=1

log𝑏

1

𝑛+
𝑖

(5)

where we could have also used 𝑛 as the upper limit of summation, since for 𝑖 > 𝑟, log 1
𝑛+
𝑖

=

log 1 = 0. Alternatively, given the definition of 𝜆 from Theorem 2, we can also write:

𝜅 =
1

2

[︃
𝑟∑︁

𝑖=1

log𝑏 𝑑𝑖 − 𝑟 log𝑏 𝜆

]︃

These formulas are equivalent (although in the latter formula we cannot use 𝑛 as the upper

limit of summation), and so this latter formula is also valid in the fixed 𝜆 formulation.

Definition 5: The information capacity allocated to processing the 𝑖-th element of canoni-

cal synthetic target 𝛽𝑐 is:

𝜅𝑖 ≡ 𝐼(𝛽𝑖,𝑐, 𝑏𝑖,𝑐,+ | ℐ−) =
1

2
log𝑏

1

𝑛+
𝑖

=

⎧⎪⎪⎨⎪⎪⎩
𝜅
𝑟

+ log𝑏

[︂
√
𝑑𝑖∏︀𝑟

𝑗=1

√
𝑑𝑗

1/𝑟

]︂
𝑖 = 1, . . . , 𝑟

0 𝑖 = 𝑟 + 1, . . . , 𝑛

(6)
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The last formulation suggests a straightforward intuition describing the allocation of ca-

pacity: first, each element is given an equal amount of attention (the 𝜅/𝑟 term), and then

attention is added (subtracted) if the square root of canonical loss weight for that element is

higher (lower) than the geometric mean across all elements that are considered. Note that

this result is in terms of the canonical synthetic target, and this intuition does not extend

to the original (fundamental) target. Given this definition, we can also write 𝜅 =
∑︀𝑟

𝑖=1 𝜅𝑖,

where we could again use either 𝑟 or 𝑛 as the upper limit of summation.

Unfortunately, there is generally no straightforward measure of the information capacity

allocated to processing an individual element of the fundamental target 𝛼. This is because

it is not straightforward to decompose mutual information for random vectors exhibiting

correlation. However, we can introduce an approximate measure.

Definition 6: An approximate measure of the information capacity allocated to the 𝑖-th

element of the fundamental target 𝛼, measured in base 𝑏, is the following component-wise

mutual information:

𝑘𝑖 ≡ 𝐼(𝛼𝑖, 𝑎+ | ℐ−) =
1

2
log𝑏

(︂
𝑃𝑖𝑖,−

𝑃𝑖𝑖,+

)︂
(7)

where, for example 𝑃𝑖𝑖,− is the (𝑖, 𝑖)-th element of the matrix 𝑃−. This quantity computes

the information about the 𝑖-th element of the target that is contained in the full action 𝑎+,

and it ignores the effect of correlation in the prior and the posterior. Note that generally∑︀𝑛
𝑖=1 𝑘𝑖 ̸= 𝜅 and, moreover, the sum does not provide either an upper or lower bound for

𝜅.

Lemma 5: If both 𝑊 and 𝑃− are diagonal matrices, then component-wise mutual informa-

tion 𝑘𝑖 is equal to both the information capacity allocated to processing the 𝑖-th element of

the fundamental target 𝛼 and the 𝑖-th element of the canonical synthetic target 𝛽𝑐, so that

𝑘𝑖 = 𝜅𝑖 and
∑︀𝑛

𝑖=1 𝑘𝑖 = 𝜅.
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4.1.4 Illustration: separable target

The solution to the static RI-LQG tracking problem is easiest to understand when the ele-

ments of the canonical target happen to be oriented in the same directions as the elements

of the fundamental target. In practice, this situation primarily occurs when 𝑊 and 𝑃−

are both diagonal, because in this case the fundamental target vector is already separable

with respect to prior uncertainty, the loss function, and mutual information. For this rea-

son, we describe a target associated with diagonal 𝑊 and 𝑃− as separable. We will first

demonstrate the relatively simple solution in the separable case, and then emphasize that

this same logic also applies to general case, except in terms of the canonical target rather

than the fundamental target.

To fix notation, we will assume 𝑃− is a positive definite diagonal matrix with elements 𝜎2
𝑖,−

and that 𝑊 is a positive semidefinite diagonal matrix with elements 𝑤2
𝑖 . For convenience,

we will assume that 𝑤2
1𝜎

2
1,− ≥ · · · ≥ 𝑤2

𝑛𝜎
2
𝑛,− (we can always re-order the elements of 𝛼 to

make this true). Application of Lemma 2 is trivial in this case since 𝑉 = 𝐿′𝑊𝐿 is already

diagonal, so that the generalized eigenvalues are simply 𝑑𝑖 = 𝑤2
𝑖 𝜎

2
𝑖,−. This formula implies

that the canonical loss weights 𝑑𝑖 can be interpreted as “loss-weighted volatility”.12 The

associated right generalized eigenvectors are 𝑟𝑖 = 𝜎𝑖,−𝑒𝑖 where 𝑒𝑖 is the 𝑖-th element of the

standard basis.

We will examine the solution in the fixed marginal cost case and note that these results

apply also to the fixed capacity formulation of the problem when the shadow cost 𝜆 is

computed as described in Theorem 2. We suppose that the rank of the solution is 𝑟, so that

𝜆 is a fixed parameter satisfying 𝑑𝑟 > 𝜆 ≥ 𝑑𝑟+1. From Theorem 1, it is easy to see that 𝑃+

will also be a diagonal matrix, and we denote its 𝑖-th diagonal element as 𝜎2
𝑖,+. Then the

12 This interpretation as “loss-weighted volatility” is still broadly true in the more general case, but the
relationships are more complex due to interaction effects
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full solution is:

𝜎2
𝑖,+ =

⎧⎪⎪⎨⎪⎪⎩
𝜆/𝑤2

𝑖 𝑖 = 1, . . . , 𝑟

𝜎2
𝑖,− 𝑖 = 𝑟 + 1, . . . , 𝑛

The first order condition would have set 𝜎2
𝑖,+ = 𝜆/𝑤2

𝑖 for 𝑖 = 1, . . . , 𝑛. This is infeasible,

since we defined 𝑟 such that 𝜆/𝑤𝑟+1 ≥ 𝜎2
𝑖,− and so this would suggest more posterior

uncertainty for elements 𝑟 + 1, . . . , 𝑛 than there existed prior uncertainty - the agent would

have “forgotten” information they previously knew. In this case, it is straightforward to

impose the constraint, setting 𝜎2
𝑖,+ = 𝜎2

𝑖,− for 𝑖 = 𝑟 + 1, . . . , 𝑛.

This case admits a simple formula for the information capacity allocated to each element:

𝑘𝑖 = 𝜅𝑖 =

⎧⎪⎪⎨⎪⎪⎩
1
2
(log𝑏𝑤

2
𝑖 + log𝑏 𝜎

2
𝑖,− − log𝑏 𝜆) 𝑖 = 1, . . . , 𝑟

0 𝑖 = 𝑟 + 1, . . . , 𝑛

More attention is paid to elements of the target that are more important (in terms of loss

weight) or that are associated with more prior uncertainty, and as the marginal cost of

attention falls, (weakly) more attention will be paid to every element. For those elements

that receive no attention from the agent according to this result, it is easy to see in the

previous result that, as one would expect, posterior uncertainty is equal to prior uncertainty.

If the no-forgetting constraint were not enforced, these elements would be associated with

negative capacity allocations.

This section applies directly to cases in which fundamental target itself is separable so that

the loss and prior covariance matrices are diagonal. This will generally not be the case,

but from Lemma 3 we know that these conditions will always be satisfied for the canonical

target. This means that the above analysis, which is easy to understand, can still be applied

in the general case, so long as it is cast in terms of the canonical target.

25



4.1.5 Comparative statics

We now consider how the solution changes as individual parameters vary, holding every-

thing else constant. Mathematically, these exercises can be relatively straightforward given

the explicit formulas we derived for posterior uncertainty and attention allocations, but

the intuition can be obscured due to the presence of binding constraints and the somewhat

opaque character of the generalized eigendecomposition. For this reason, in this section we

will only briefly describe the general effects on posterior uncertainty of a change in each

type of parameter and will then focus on illustrating important behavior using two specific

examples.

There are three types of parameters in the model: (1) the parameter associated with the

information constraint, 𝜆 or 𝜅, (2) the elements of 𝑊 describing the loss function, and

(3) the elements of 𝑃− describing prior uncertainty. The effect of a change in the first

type can be understood by focusing only on the marginal, or shadow, cost parameter 𝜆, as

a consequence of the Corollary to Theorem 2. It is easy to see from Theorem 1 that an

increase (decrease) in the marginal cost of attention always weakly increases (decreases)

posterior uncertainty for every element of the target.

For the second and third types of parameters, it is difficult to achieve a simple presenta-

tion of the wide variety of effects possible, as these parameters affect both the generalized

eigenvalues and the generalized eigenvectors, and so affect the definition of the canonical

target. Rather than attempt it, we instead consider the effect of a change in one of the

canonical loss weights 𝑑𝑖, with the justification that this captures all possible effects for a

given canonical target.

For the first time, here the formulation of the information constraint has a material effect

on results. If the problem is formulated with a fixed marginal cost of attention, then an in-

crease in the canonical loss weight associated with the 𝑖-th element of the canonical target,
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𝑑𝑖, weakly decreases posterior uncertainty associated with that element, but leaves poste-

rior uncertainty associated with the other elements unchanged. If the problem is instead

formulated with a fixed capacity, then an increase in 𝑑𝑖 still weakly decreases posterior

uncertainty for that element, but now weakly increases posterior uncertainty for all other

elements. In the latter case, the increase in 𝑑𝑖 makes it optimal to pay more attention to the

𝑖-th component, but attention must be reallocated from elsewhere to achieve that. In the

former case, the agent simply pays to allocate additional attention, and the end result is an

increase in the total quantity of information processed.

Illustration We now illustrate these results using two specific examples. The baseline

parameterizations are as follows:

Example (a) 𝑊 (𝑎) =

⎡⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎦ , 𝑃
(𝑎)
− =

⎡⎢⎢⎢⎢⎣
1.5 0 0

0 1.4 0

0 0 0.8

⎤⎥⎥⎥⎥⎦

Example (b) 𝑊 (𝑏) =

⎡⎢⎢⎢⎢⎣
1.5 0 0

0 1.4 0

0 0 0.8

⎤⎥⎥⎥⎥⎦ , 𝑃
(𝑏)
− =

⎡⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎦
These examples are relatively easily to understand because they are separable, and they

are relatively easy to contrast because they share the same canonical loss weights. This

allows us to highlight those differences caused by different loss matrices separately from

those differences caused by different levels of prior uncertainty. While example (a) might

initially appear more plausible than example (b) - since it may seem particularly unrealistic

that the prior covariance matrix be the identity - it is example (b) that will be more useful in

understanding more complex models. This is because any static RI-LQG tracking problem

will be in the form of example (b) when it is cast in terms of its canonical target.
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Fig. 1 and Fig. 2, corresponding respectively to examples (a) and (b), each contain four

panels depicting prior uncertainty and optimal posterior uncertainty.13 In both figures, the

panel at the far left depicts the baseline case, while the three other panels depict specific de-

viations from that baseline case. In both figures, the second panel from the left depicts the

effect of an increase in the marginal cost of attention (or equivalently a decrease in avail-

able capacity). The third and fourth panels depict a decrease in the canonical loss weight

associated with the first element of the target, under the fixed marginal cost formulation in

the third panel and under the fixed capacity formulation in the fourth panel. The two exam-

ples differ in how this decrease in the canonical loss weight is achieved - in example (a) we

consider a decrease in prior uncertainty associated with the first element of the target, while

in example (b) we consider a decrease in the loss weight associated with the first element.

In each panel, each bar outlined in black represents uncertainty associated with one element

of the target. The height of the bar represents prior uncertainty, the dashed lines represent

the level of posterior uncertainty suggested by the first order condition, the unshaded por-

tion represents the optimal level of posterior uncertainty, and the shaded portion represents

the reduction in uncertainty due to information processing. For some elements, there is a

hatched region in place of the shaded region; in these cases, the first order condition sug-

gested too high a level of posterior uncertainty, and the no-forgetting constraint became

binding so that no information was processed. The hatched region represents the infeasible

proposed enlargement of uncertainty.

In example (a), since the loss weight for each element of the target is equal to one, the

proposed posterior uncertainty for each is simply equal to 𝜆, which is set to be about 0.9

in the baseline case for this illustration. As shown in the first panel, this is feasible for the

first two elements, which have relatively high prior uncertainty, but is not feasible for the

third element, for which prior uncertainty is already lower than the given value of 𝜆. In

the second panel, we consider increasing 𝜆, and this has straightforward effects: posterior

13 The solution process visualized in Fig. 1 is commonly known as “reverse water filling”.
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uncertainty for the first two elements rises, while posterior uncertainty for the third element

cannot rise any further. In the third panel, we consider, relative again to the baseline case,

the effect of decreasing prior uncertainty associated with the first element while assuming

that the model is formulated with a fixed marginal cost of attention. Because this change

does not affect the loss weight, it does not affect the proposed level of uncertainty, which

is still equal to 𝜆. In fact, if we had only slightly reduced the prior uncertainty, it would not

have changed the solution at all. However, in this case the reduction in prior uncertainty is

so great that the no-forgetting constraint begins to bind. As described above, this has no

effect on the solution for the second or third elements. In the last panel, we again consider,

relative to the baseline case, the same decrease in prior uncertainty, but this time assuming

that the model is formulated with a fixed capacity; the results clearly differ from those in

the previous panel. Because the reduction in prior uncertainty makes it easier for the agent

to achieve any desired level of posterior uncertainty, this has the effect of reducing the

shadow cost of attention. While the no-forgetting constraint still begins to bind for the first

element, in this case posterior uncertainty falls for both of the other elements, and in fact

the no-forgetting constraint ceases to bind for the third element.

Even though the specifics of the solutions differ in example (b), there are qualitatively simi-

lar results from the comparative statics exercises. The two main differences are, first, since

the loss weights differ, the first order condition will propose different levels of posterior

uncertainty for each element of the target and, second, since prior uncertainty is the same,

the no-forgetting constraint will bind at the same point for each element. The qualitative

similarities are apparent in the second, third, and fourth panels: in response to an increase

in 𝜆, posterior uncertainty rises for each element; in response to a decrease in the canonical

loss weight for the first element under a fixed marginal cost of attention, the no-forgetting

constraint binds for the first element while the solutions for the other two elements remain

unchanged; and in response to the same decrease under a fixed capacity, posterior uncer-

tainty falls for the other two elements.
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It is not an accident that these two examples share qualitative results; they were designed

so that example (b) is simply example (a) recast in terms of its canonical target. In general,

it may be quite difficult to interpret the solution in terms of the fundamental target, while

it will always be easy to do so in terms of the canonical target. Simplifications achieved

by considering the problem in terms of the canonical target will arise in every subsequent

section of this paper.

4.2 Geometric interpretation of the static RI-LQG tracking problem

and solution

(1) First-order condition

Prior
Posterior

(2) Whitened (3) Canonical

(4) Canonical, constrained (5) Whitened, constrained (6) Posterior

Figure 3: Geometrization of Theorem 1 using ellipsoids

In this section, we use a geometrical approach to interpret the problem and the nature of

the solution given in Theorems 1 and 2. This is especially helpful in understanding the

solution when the loss and prior covariance matrices are not diagonal. The general idea is
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to take advantage of the geometrization of positive definite matrices, specifically covariance

matrices, as ellipsoids.

The iso-density loci of the prior and posterior conditional distributions of the fundamental

target form ellipsoids defined by the prior and posterior covariance matrices, and these

ellipsoids can be interpreted as regions of uncertainty about the target, conditional on the

prior or posterior information set. The volume of the ellipsoid defined by a positive definite

matrix 𝑃 is 𝑉𝑃 = |𝑃 | × 𝑉𝑠 where 𝑉𝑠 defines the volume of an n-dimensional unit sphere.

Iso-density ellipsoids with greater volume are associated with larger covariance matrices

and increased uncertainty. The ratio of prior volume to posterior volume is given by 𝑉−
𝑉+

=

|𝑃−|×𝑉𝑠

|𝑃+|×𝑉𝑠
. Taking logs and dividing by two, we see that

1

2
(log𝑏(𝑉−/𝑉+)) =

1

2
(log𝑏 |𝑃−| − log𝑏 |𝑃+|) = 𝐼(𝛼, 𝑎+ | ℐ−)

Thus the information constraint can be understood in terms of the relative volumes of the

prior and posterior ellipsoids. Under the fixed capacity formulation, the information con-

straint limits the volume of the ellipsoid describing posterior uncertainty in terms of the

prior volume: if 𝐼(𝛼, 𝑎+ | ℐ−) ≤ 𝜅, then 𝑉− ≥ 𝑉+ ≥ 1
22𝜅

𝑉−. Similarly, under a fixed

marginal cost, the total cost equals the marginal cost times a function of the ratio of vol-

umes. The two positive semidefiniteness constraints in Definition 1 can also be understood

in terms of the prior and posterior ellipsoids. The constraint 𝑃+ ≥ 0 simply requires that

the posterior ellipsoid be well-defined. The no-forgetting constraint 𝑃− − 𝑃+ ≥ 0 requires

that the posterior ellipsoid be weakly contained within the prior ellipsoid. If the posterior

ellipsoid extended beyond the prior ellipsoid in any direction, that would correspond to

“forgetting” information previously known.

Formally, an ellipsoid defined by a positive definite covariance matrix 𝑃 can be fully de-

scribed in terms of its eigendecomposition. Its eigenvectors determine the directions of

the ellipsoid’s principal axes, and its eigenvalues are proportional to the squares of the
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semi-axis lengths. Because the determinant of a matrix is the product of its eigenvalues,

the volume of an ellipsoid is invariant to its rotation, and for this reason, the information

constraint depends only on the eigenvalues of the prior and posterior. The no-forgetting

constraint, however, depends also on the eigenvectors.

A preliminary step in the proof of Theorem 1 was to establish that in the static RI-LQG

tracking problem it will always be optimal for the eigenvectors of 𝑃+ to coincide with the

eigenvectors of a particular transformation of the loss matrix 𝑊 . This result fixes the ro-

tation of the posterior ellipsoid; what remains is to select its eigenvalues. The first-order

condition proposes setting the eigenvalues equal to the eigenvalues of the inverse loss ma-

trix scaled by 𝜆. If the no-forgetting constraint is not binding then this fixes the semi-axis

lengths and completes the solution. If the latter constraint does bind, however, the prob-

lem is more difficult because the posterior ellipsoid is usually not concentric with the prior

ellipsoid; that is, they usually do not usually share eigenvectors. If the ellipsoids were con-

centric, then imposing the no-forgetting constraint would be straightforward: simply “pull

in” the ends of each posterior principal axis that extend beyond the prior. This straightfor-

ward case is actually the situation when both 𝑊 and 𝑃− are diagonal, as we showed above.

In the general case, however, it is not obvious which axes to “pull in”, or by how much.

This problem is solved by simultaneous diagonalization, which generates new coordinates

under which the prior and posterior ellipsoids are not only concentric but are aligned with

the standard axes. In fact, in the new coordinate space the prior is an n-dimensional unit

sphere. The matrix 𝑆 from Lemma 2 is the change of basis matrix implementing the trans-

formation to the new coordinates, and the ellipsoids of uncertainty in the transformed space

correspond to covariance matrices associated with the canonical synthetic target. The sim-

ple “pulling-in” approach can be implemented in the new coordinate space, and the solution

in the original space can be found simply by reversing the transformation. This is possi-

ble because relative volumes are preserved by this transformation and the no-forgetting
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constraint is satisfied in the original space if and only if it is satisfied in the transformed

space.

We visualize the geometrical interpretation of the problem and solution in the six panels of

Fig. 3. Panels (1) and (6), (2) and (5), and (3) and (4) represent prior and proposed posterior

ellipsoids in three different coordinate spaces. In all panels, the dotted ellipsoids represent

the prior in the given space and the solid ellipsoids represent a candidate posterior. The

three upper panels represent the infeasible posterior proposed by the first order condition,

and the three lower panels represent the feasible, constrained, posterior.

Panel (1) displays the prior ellipsoid and the proposed posterior ellipsoid satisfying the

first order condition, 𝑃+ = 𝜆𝑊−1, in the standard basis. It is clear that the no-forgetting

constraint is not satisfied, since the proposed posterior extends beyond the prior. Panel

(2) represents the same prior and proposed posterior ellipsoids as in Panel (1), but after

an intermediate transformation has been applied. This transformation will be called the

“whitening” transformation and will be described in more detail later. The underlying

coordinate space is called the “whitened” space.

Panel (3) again represents the same prior and proposed posterior ellipsoids, but now after

the transformation to the canonical synthetic target has been applied. Accordingly, we

call the underlying coordinate space the “canonical” coordinate space for this problem. In

this panel, the problem has not been solved (since the posterior still extends beyond the

prior), but the ellipsoids are concentric and are aligned with the standard axes, making the

imposition of the constraints straightforward.

Panel (4) remains in the canonical coordinate space, but now displays the constrained pos-

terior resulting from the pulling-in operation applied to the 𝑥 semi-axis, as described above.

The no-forgetting constraint is now satisfied. Panels (5) and (6) simply reverse the trans-

formation to return to the original coordinate space. In Panel (6), the solid ellipsoid now

represents the posterior covariance matrix that solves the static RI-LQG tracking problem,
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with the no-forgetting constraint now satisfied.

4.3 The action solving the static RI-LQG tracking problem

In the previous sections, we noted that the optimal action is a conditional expectation,

𝑎+ = 𝐸[𝛼 | ℐ+], but presented the solution in terms of 𝑃+. In this section we provide

a few important results concerning the structure and interpretation of the action 𝑎+ itself,

although two preliminary steps in this section will be asserted for the time being and will

only by proved in later sections. First, we will write 𝛼̂ to denote the agent’s understanding

of the target based solely on incoming data; this will only be fully formalized later. Second,

we present the result, derived later, that the agent’s optimal action can be written as a

weighted average of their prior and their understanding of the incoming data:

𝑎+ = (𝐼 −𝐾)𝑎− + 𝐾𝛼̂ (8)

where the weight matrix is 𝐾 = 𝐼−𝑃+𝑃
−1
− . This equation shows that, as usual in the LQG

imperfect information setting, our agent is a Bayesian updater, but now because the agent is

rationally inattentive, the weight matrix is not given but is selected. One important insight

from this equation is that there are two channels through which the agent’s action is driven

away from the target. The first is that since the agent incompletely processes the incoming

data, their understanding of the target is less than perfect, and so part of their action will be

based on contaminating noise. The second is that even after receiving updated information,

the rationally inattentive agent still places weight on their prior because they take into

account their limited understanding of the incoming data.

Two limiting cases provide some intuition. First, as information becomes perfect, we have

both 𝐾 → 𝐼 and 𝛼̂ → 𝛼, so that the agent puts all weight on their understanding of

the incoming data, and moreover their understanding is correct. When no information is

35



collected, 𝐾 → 0 and 𝛼̂ becomes diffuse, so that no weight is placed on incoming data and

the action is equal to the prior. More general results are difficult in terms of the fundamental

target 𝛼, because in general 𝐾 will not be diagonal. As usual, however, things are more

straightforward in terms of the canonical synthetic target 𝛽𝑐.

To motivate the use of the canonical coordinate space in interpreting the action, notice that

we can rewrite 𝐾 = 𝑅(𝐼 − 𝑁+)𝑆. The rows of the matrix 𝑆, 𝑠′𝑖, are the left generalized

eigenvectors of (𝑃+, 𝑃−) associated with generalized eigenvalues 𝑛+
𝑖 , and it is not hard

to see that those rows are also the left eigenvectors of 𝐾 associated with eigenvalues 1 −

𝑛+
𝑖 . The elements of the canonical target 𝛽𝑐 are the linear combinations of 𝛼 defined by

these left eigenvectors 𝑠′𝑖. Taken together, the elements of the canonical target are exactly

those random variables for which Bayesian updating by a rationally inattentive agent occurs

independently. This is formalized in Lemma 6.

Lemma 6: The components of 𝑏𝑐,+ = 𝐸[𝛽𝑐 | ℐ+], which we call the canonical synthetic

action (briefly the canonical action), are:

𝑏𝑖,𝑐,+ = 𝑛+
𝑖 𝑏𝑖,𝑐,− + (1 − 𝑛+

𝑖 )𝛽𝑖,𝑐 (9)

where 𝑛+
𝑖 ∈ [0, 1] and 𝑏𝑐,− = 𝐸[𝛽𝑐 | ℐ−], and where the agent’s understanding of the

canonical target, 𝛽𝑖,𝑐, is defined as

𝛽𝑖,𝑐 ≡ 𝑦𝑖,𝑐 = 𝛽𝑖,𝑐 + 𝜀𝑖,𝑐, 𝜀𝑖,𝑐 ∼ 𝑁(0, (1/𝑛+
𝑖 − 1)−1)

if 𝑛+
𝑖 ∈ [0, 1) and is diffuse if 𝑛+

𝑖 = 1. The noise term 𝜀𝑖,𝑐 is a mechanism to formalize

the effects of inattention. The alternative notation used here, 𝑦𝑖,𝑐, will connect this lemma

with our definition of representations, introduced later. Importantly, while it will turn out

that 𝛽𝑖,𝑐 will always correspond to what we term a feasible representation, so that we will

always be justified in writing it as 𝑦𝑖,𝑐, the same is not true of 𝛼̂.
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In the canonical coordinate space, therefore, the Bayesian updating is straightforward:

the action is a simple weighted average of the prior for that component and a noise-

contaminated version of the canonical target. We now relate these results to the action

associated with the fundamental target.

Theorem 3: The (fundamental) action that solves the static RI-LQG tracking problem for

either the fixed marginal cost or fixed capacity case is:

𝑎+ = 𝑅𝑏𝑐,+ (10)

where 𝑏𝑐,+ is the canonical action and 𝑅 is the matrix of right generalized eigenvectors

defined in Lemma 2. Although this Theorem is in a sense trivial - a straightforward ap-

plication of the definition of the canonical target - it is important because it formalizes the

construction of 𝑎+.

4.3.1 Bias, variance, and responsiveness

In general, we know that rationally inattentive individuals will not respond perfectly to in-

coming data, but we can use the updating equation in the canonical space, given in Lemma

6, to provide a sharper comparison with the perfect information situation. Above, we de-

scribed two channels driving the action away from the target; formally, these are, first, that

a rationally inattentive agent introduces contaminating noise, since 𝜀𝑖,𝑐 ̸= 0, and, second,

that a rationally inattentive agent chooses to be partially unresponsive, since 𝑛+
𝑖 ̸= 0. By

contrast, a perfectly informed agent has both of these equal to zero. By viewing the action

𝑏𝑖,𝑐,+ as the rational inattention estimator of 𝛽𝑖,𝑐, we can say that the variance of the esti-

mator is due to the former channel, while the bias of the estimator is due to the latter. To

justify this terminology, we define the bias and variance of the rational inattention action
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as:

𝐸 [𝑏𝑖,𝑐,+ − 𝛽𝑖,𝑐 | ℐ−, 𝛽𝑖,𝑐] = 𝑛+
𝑖 (𝑏𝑖,𝑐,− − 𝛽𝑖,𝑐) Bias

𝑉 𝑎𝑟(𝑏𝑖,𝑐,+ | ℐ−, 𝛽𝑖,𝑐) = (1 − 𝑛+
𝑖 )2𝑉 𝑎𝑟(𝜀𝑖,𝑐) Variance

The bias is generally nonzero unless the target is degenerate (𝛽𝑖,𝑐 ≡ 𝑏𝑖,𝑐,−) or information

is perfect (𝑛+
𝑖 = 0). The variance is nonzero unless information is perfect or the agent

collects no information at all (𝑛+
𝑖 = 1). The bias describes the extent to which the rational

inattention action will differ from the target on average. The quantity 𝑛+
𝑖 is the proportion

of the unexpected part of the incoming data to which the agent is unresponsive, and so

the quantity 1 − 𝑛+
𝑖 can be interpreted as the responsiveness of the agent. It is difficult to

meaningfully extend these results to the fundamental target in a general way, other than by

mechanically referencing Theorem 3.

4.3.2 Linear combinations of the target

It can be useful to explore arbitrary linear combinations of the action, 𝑤′𝛼 where 𝑤 is an

𝑛 × 1 vector of weights, and it is easy to do so. Applying Theorem 3, we can compute

any linear combination as 𝑤′𝑎+ = 𝛾′𝑏𝑐,+, where 𝛾′ = 𝑤′𝑅 are the weights in the canoni-

cal space. One reason that this is interesting is that the loss function is often constructed

exactly to minimize the weighted mean square error of one or more such linear combina-

tions. Supposing that we are interested in 𝑛 linear combinations defined by 𝑤1, . . . , 𝑤𝑛

with weights 𝜉1, . . . , 𝜉𝑛, then the loss function is:

𝑛∑︁
𝑖=1

𝜉𝑖𝐸 [(𝑤′
𝑖𝛼− 𝑤′

𝑖𝑎+)′(𝑤′
𝑖𝛼− 𝑤′

𝑖𝑎+) | ℐ−]

and this can be rewritten in the standard form 𝐸 [(𝛼− 𝑎+)′𝑊 (𝛼− 𝑎+) | ℐ−] by setting

𝑊 =
∑︀𝑛

𝑖=1 𝜉𝑖𝑤𝑖𝑤
′
𝑖.
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A special case that is often of interest occurs when an agent is only interested in tracking

one specific linear combination 𝑝 = 𝑤′𝛼, so that their loss function is 𝐸[(𝑝 − 𝑝+)2 | ℐ−].

This can be written in the standard form using the rank one loss matrix 𝑊 = 𝑤𝑤′. Although

the action solving the static RI-LQG tracking problem is 𝑎+, the agent is only interested

in the synthetic posterior 𝑝+ = 𝑤′𝑎+. We can of course compute this using Theorem 3,

but in this case we can actually derive a more explicit solution. Using the first Corollary to

Theorem 1 it is easy to show that 𝑤′ is a left eigenvector of 𝐾 and therefore the target of

interest 𝑝 is simply a scalar multiple of the canonical target. This result is very intuitive:

the agent chooses to track exactly the object of interest. Finally, it is straightforward to

show that the posterior collapses to 𝑝+ = 𝑛+
1 𝑝− + (1 − 𝑛+

1 )𝑝, so that the ultimate form of

the solution is a simple Bayesian update in terms of the object of interest.

In this rank one case, we can simply characterize the sense in which uncertainty is reduced

between prior and posterior. Since 𝑤′ is proportional to the only generalized eigenvector

associated with a nonzero eigenvalue, it follows that any vector orthogonal to 𝑤′ is in the

null space of 𝐾. Writing 𝑤⊥ as a vector orthogonal to 𝑤, it is not hard to show that

𝑤′𝑃+𝑤 < 𝑤′𝑃−𝑤 and that 𝑤⊥′
𝑃+𝑤

⊥ = 𝑤⊥′
𝑃−𝑤

⊥. The general version of this result for

the rank 𝑛 case is that uncertainty is only reduced for the space spanned by the canonical

targets 𝛽𝑖,𝑐 to which attention is actually allocated, i.e. for which 𝑛+
𝑖 < 1.

4.3.3 Illustration: rank one case

To illustrate the rank one case, we consider the example in section 3.2.3 of Sims (2010)

in which an agent is supposed to be tracking a variable 𝑦𝑡 =
∑︀𝑛

𝑖=1 𝑧𝑖𝑡 subject to a fixed

marginal cost of attention 𝜆, where 𝑧𝑖𝑡 ∼ 𝑁(0, 𝜔2), independent across 𝑖 and 𝑡. Since this

problem is identical at each time period 𝑡, we can sequentially apply the static solution

described here, and we assume that the agent’s prior is just the unconditional distribution,

so that 𝑧𝑡 | ℐ𝑡−1 ∼ 𝑁(0, 𝜔2𝐼) for all 𝑡. While Sims (2010) gives the general form of the
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solution to this problem, as a consequence of Theorem 1 we can easily derive the exact

formula.

To set up the problem in terms of our Definition 1, the fundamental target is the vector 𝑧𝑡

and the loss matrix is 𝑊 = 𝜄𝜄′ = 1
𝑛×𝑛

(an 𝑛× 𝑛 matrix of ones), where 𝜄 = (1, 1, . . . , 1)′ is

a vector of weights defining 𝑦𝑡 as a linear combination of 𝑧𝑡. The prior covariance matrix

is 𝑃− = 𝜔2𝐼 . The canonical loss weights are 𝑑1 = 𝑛𝜔2 and 𝑑𝑖 = 0 for 𝑖 = 2, . . . , 𝑛.

This implies that 𝑛+
1 = min(𝜆/𝑛𝜔2, 1) and 𝑛+

𝑖 = 1 for 𝑖 = 2, . . . , 𝑛. Applying the first

Corollary to Theorem 1, we conclude that:

𝑃+ = 𝜔2(𝐼 − (1 − 𝑛+
1 )(1/𝑛) 1

𝑛×𝑛
)

This agrees with the solution in Sims (2010), except that we are able to be more explicit the

term (1−𝑛+
𝑖 ). As described above, we have also formalized Sims’ remark that the variance

of any linear combination 𝑤′𝑧𝑡 that is uncorrelated with 𝜄′𝑧𝑡 will not be reduced, regardless

of the cost 𝜆. This is easy to see here, because 𝜄′ is the only generalized eigenvector 𝑠′𝑖

associated with a generalized eigenvalue for which it is possible that 𝑛+
𝑖 < 1.

4.4 Transformations of the static RI-LQG tracking problem

In previous sections, we have extensively used a specific transformation to construct what

we call the canonical synthetic target. This transformation is particularly useful because it

simplifies the problem while preserving important relationships, especially the information

and no-forgetting constraints. However, this is not the only possible transformation of the

problem, and so we provide a more general result here.

Definition 7: Consider a static RI-LQG tracking problem defined by the tuple (𝑊,𝑎−, 𝑃−),

referred to as the reference problem. Let 𝐵 be a nonsingular 𝑛 × 𝑛 matrix. We define the

𝐵-transformed static RI-LQG tracking problem, corresponding to the 𝐵-synthetic target
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𝛽 = 𝐵𝛼, as:

min
𝑂+

𝑡𝑟(𝑉 𝑂+) + 𝜆(ln |𝑂−| − ln |𝑂+|) (11)

s.t. 𝛽 | ℐ− ∼ 𝑁(𝑏−, 𝑂−)

𝑂+ ≥ 0

𝑂− −𝑂+ ≥ 0

where 𝑉 = 𝐵−1′𝑊𝐵−1, 𝑂− = 𝐵𝑃−𝐵
′ and 𝑏− = 𝐵𝑎−. We represent the 𝐵-transformed

problem by the tuple (𝐵,𝑊, 𝑎−, 𝑃−), and note that this definition encompasses the standard

formulation given by Definition 1, which can be included here by setting 𝐵 to the identity

matrix. Note also that any 𝐵-transformed problem can be written as an independent prob-

lem (𝐼, 𝑉, 𝑏−, 𝑂−), although this eliminates connection to the reference problem.

Theorem 4: If a matrix 𝑂+ solves the 𝐵-transformed static RI-LQG tracking problem

(𝐵,𝑊, 𝑎−, 𝑃−), then the matrix 𝑃+ = 𝐵−1𝑂+𝐵
−1′ solves the reference static RI-LQG

tracking problem (𝑊,𝑎−, 𝑃−).

We can use this result to redefine the canonical target.

Definition 8: Let 𝑆 be the matrix defined in Lemma 2. Then the 𝑆-transformed problem

(𝑆,𝑊, 𝑎−, 𝑃−) is called the canonical form of the reference problem and the 𝑆-synthetic

target is exactly the canonical synthetic target given in Definition 2, 𝛽𝑐 ≡ 𝑆𝛼.

There are two other synthetic targets that it will be useful to formally define.

Definition 9: Let 𝑀 ′𝑀 = 𝑃−1
− . Then the 𝑀 -transformed problem (𝑀,𝑊, 𝑎−, 𝑃−) is

called the whitened form of the reference problem and the 𝑀 -synthetic target is called the

whitened synthetic target.

Definition 10: Let 𝑍𝑋𝑍 ′ = 𝑊 be the eigendecomposition of 𝑊 . Then the 𝑍-transformed

problem (𝑍,𝑊, 𝑎−, 𝑃−) is called the eigendecomposition form of the reference problem
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and the 𝑍-synthetic target is called the eigendecomposition synthetic target.

Since the product of two nonsingular matrices is again nonsingular, we can chain transfor-

mations together, and still apply Theorem 4 to the product of the transformation matrices.

Lemma 7: If 𝐵 and 𝐶 are nonsingular 𝑛× 𝑛 matrices, then the 𝐶𝐵-transformed problem

(𝐶𝐵,𝑊, 𝑎−, 𝑃−) is equal to the 𝐶-transformation of the 𝐵-transformed problem.

This allows us to give further insight into the canonical form of the static RI-LQG tracking

problem.

Lemma 8: The canonical form of the reference problem is equivalent to the transformed

problem achieved by first applying the whitening transformation to the reference prob-

lem and then subsequently applying the eigendecomposition transformation to the resultant

whitened problem.

Lemma 8 is a formalization of the geometrical steps visualized in Fig. 3.

5 Representations

Although we have continually described 𝑎+ as a conditional expectation, we have so far

left the posterior information set ℐ+ vague and focused instead on the posterior covariance

matrix 𝑃+, and we have also purposely presented both the problem and solution with no

mention of the “observation” or “signal” vectors that are commonly used in the rational

inattention literature. In this section, we finally consider the posterior information set and

discuss what we call “representations” of the information processed by agents. We first

pursue these issues qualitatively and then formalize them using an algebraic approach.

Definition 11: For a static RI-LQG tracking problem (𝑊,𝑎−, 𝑃−) with solution 𝑃+ and the

corresponding action 𝑎+, we define a representation as any random vector 𝑦+ that generates

the solution, i.e. for which 𝐸[𝛼 | ℐ−, 𝑦+] = 𝑎+. An innovation representation, denoted 𝑣+,
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is any representation that additionally satisfies 𝐸[𝑣+ | ℐ−] = 0.

We think that “representation” is a natural term to capture the essence of these vectors,

particularly because they are not fundamental to the static RI-LQG tracking problem and

because there are many vectors that satisfy the definition. When we provide a formal

derivation, we will show that the most useful subset of representations correspond to a

noise-contaminated version of some synthetic target. The synthetic targets express the fun-

damental target in different coordinate systems, and this is also the role representations

play, except that representations express the agent’s imperfect understanding after process-

ing new data.

Lemma 9: The action 𝑎+ is a representation, since 𝑎+ = 𝐸[𝛼 | ℐ−, 𝑎+]. Thus we can refer

to the action 𝑎+ as the agent’s “perception” of the target.

The term “perception” seems natural to use when discussing 𝑎+ as it relates to the agent’s

understanding of the target 𝛼 whereas the term “action” seems natural when discussing

how the agent uses the solution of the rational inattention problem in the context of a

larger economic problem. However, both terms refer to the same object, the conditional

expectation 𝑎+.

In the rational inattention literature, what we refer to here as representations are often in-

stead referred to as “observations” or as “signals”, and the rational inattention problem is

often formulated in terms of selecting the noise covariance matrix corresponding to a spe-

cific form of a signal vector, rather than in terms of selecting the posterior covariance as

we have done. This approach can be valid, and in fact we will later show how to reformu-

late the static RI-LQG tracking problem in similar terms. However, we argue that using

the terms “observation” or “signal” can create ambiguities because they conjure up certain

connotations that may not be natural in the rational inattention context. As we develop for-

mal definitions of representations and the posterior information set, we will make concrete

these concerns.
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5.1 Posterior information set and feasible representations

In this section, we use an algebraic approach to describe the posterior information set and

the space of representations available to the agent.

Since the optimal action is a conditional expectation and since all variables are jointly

Gaussian, 𝑎+ is the linear projection of 𝛼 onto a vector space. We take 𝒱 to be the vec-

tor space of Gaussian random vectors of dimension 𝑛 equipped with the inner product

⟨𝑋, 𝑌 ⟩ = 𝐸[𝑋𝑌 ′]14, and identify 𝒲− and 𝒲+ to be the subspaces of 𝒱 defined by the

information sets ℐ− and ℐ+. This implies that 𝒲− ⊆ 𝒲+. Now, recalling that we can

write 𝛼 = 𝑎+ + 𝜂, we have 𝛼 ∈ 𝒱 , 𝑎+ ∈ 𝒲+, and 𝜂 ∈ 𝒲⊥
+ , where 𝒲⊥

+ is the orthogonal

complement to 𝒲+ in 𝒱 . Thus 𝛼 = 𝑎+ + 𝜂 is a decomposition into orthogonal subspaces.

Our goal is to isolate only the new information collected by the agent, and formally we want

to construct a subspace 𝒲* that is the orthogonal complement of 𝒲− in 𝒲+. The first step

is to pick a subspace 𝒲𝑦 such that 𝒲+ = 𝒲− ⊕ 𝒲𝑦. If we let {1, 𝑣−} be an orthogonal

basis for 𝒲− and take as given a basis {𝑦+} for 𝒲𝑦, then {1, 𝑣−, 𝑦+} will be a basis for

𝒲+.15 However, because we did not require 𝒲− ⊥ 𝒲𝑦, this latter basis will generally

not be orthogonal, and thus 𝒲𝑦, and so also the basis vector 𝑦+, contains a component

of information already known by the agent. However, we can construct an orthogonal

basis {1, 𝑣−, 𝑣+} by applying the Gram-Schmidt process, so that 𝑣+ = 𝑦+ − proj𝒲−
𝑦+.

This 𝑣+ is now orthogonal to 𝒲− and so only contains new information; thus we have

defined the space we want as 𝒲* = span(𝑣+). This allows us to write 𝑎+ as an orthogonal

14 More precisely, this ⟨𝑋,𝑌 ⟩ is the Gram matrix consisting of the component-wise inner products of the
random vectors 𝑋,𝑌 .

15 The dimensions of 𝒲− and 𝒲* are not essential to this section, and could be made to be any number
greater than zero.
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decomposition:

𝑎+ = proj𝒲−
𝛼⏟  ⏞  

𝑎−

+ proj𝒲*𝛼⏟  ⏞  
𝑎*≡𝐾𝑣𝑣+

where 𝑎− is the prior mean, now interpreted as the projection of 𝛼 on prior informa-

tion, 𝑎* is the projection of 𝛼 on new information, and the projection matrix is 𝐾𝑣 =

⟨𝛼, 𝑣+⟩[⟨𝑣+, 𝑣+⟩]−1. In this way, we have decomposed posterior information, defined by

𝒲+, into purely prior information, in 𝒲−, and purely new information, in 𝒲*.

As suggested by the notation, the vectors 𝑦+ will correspond to the representations intro-

duced in the previous section and the vectors 𝑣+ will correspond to innovation representa-

tions. However, we still do not have an operational definition of 𝑦+, 𝒲*, or 𝒲+. To remedy

this, we consider an arbitrary random vector 𝑦 ∈ 𝒱 . Denoting the space spanned by 𝛼 as 𝒱𝛼

and its orthogonal complement in 𝒱 as 𝒱⊥
𝛼 , we can perform an orthogonal decomposition

𝑦 = proj𝒱𝛼
𝑦+proj𝒱⊥

𝛼
𝑦. Since 𝛼 is a basis element of 𝒱𝛼 we can write proj𝒱𝛼

𝑦 ≡ 𝑍𝛼 where

𝑍 is some conformable matrix, and we will denote 𝜁 ≡ proj𝒱⊥
𝛼
𝑦. We can then construct

𝑣+ = 𝑦 − proj𝒲−
𝑦, and note that proj𝒲−

𝑦 = 𝑍𝑎− + proj𝒲−
𝜁 . We define 𝜀 ≡ 𝜁 − proj𝒲−

𝜁

and Λ ≡ ⟨𝜀, 𝜀⟩, and we note that both 𝜀 ⊥ 𝛼 and 𝜀 ⊥ 𝒲−. This allows us to operationalize

an innovation representation as 𝑣+ = 𝑍𝛼 + 𝜀− 𝑍𝑎−.

We can now explicitly compute ⟨𝛼, 𝑣+⟩ = 𝑃−𝑍
′ and ⟨𝑣+, 𝑣+⟩ = 𝑍𝑃−𝑍

′ + Λ so that

𝐾𝑣 = 𝑃−𝑍
′(𝑍𝑃−𝑍

′ + Λ)−1. Notice that, given the prior, the innovation representation 𝑣+

and the space 𝒲* are completely defined by the pair (𝑍,Λ), as is 𝐾𝑣. Furthermore, from

any such pair we can define a representation 𝑦+ = 𝑍𝛼+ 𝜀 for which 𝑦+− proj𝑊−
𝑦+ = 𝑣+.

The last step is to specify the matrices 𝑍 and Λ that correspond to valid representations.

To do so, we note that 𝑃+ = ⟨𝛼, 𝛼 − 𝑎+⟩ and it is not hard to show that this yields 𝑃+ =

𝑃− − 𝑃−𝑍
′(𝑍𝑃−𝑍

′ + Λ)−1𝑍𝑃−. Applying the matrix inversion lemma to this equation,
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we arrive at:

𝑍 ′Λ−1𝑍 = 𝑃−1
+ − 𝑃−1

−

Any pair (𝑍,Λ) that satisfies this equation, along with Λ positive semidefinite (since it

results from an inner product), describes what we will call a feasible representation. It is

in this way that the choice of 𝑃+ in the static RI-LQG tracking problem defines 𝒲+ and

thereby defines ℐ+. We now define a slightly more general concept of representation and

give a formal definition of a feasible representation.

Definition 12: For a static RI-LQG tracking problem with solution 𝑃+, a representation of

dimension 𝑚 is defined as a tuple (𝑑, 𝑍,Λ−1) such that:

a. 𝑑 is an 𝑚× 1 vector that is constant with respect to the prior information set

b. 𝑍 is an 𝑚× 𝑛 matrix with full row rank16

c. Λ−1 is an 𝑚×𝑚 positive semidefinite matrix

d. The equation 𝑍 ′Λ−1𝑍 = 𝑃−1
+ − 𝑃−1

− is satisfied

Because we only require Λ−1 positive semidefinite, such a representation cannot always be

meaningfully written in terms of some target contaminated by a well-defined noise term.

We therefore introduce an additional condition:

e. For some 0 < ℓ ≤ 𝑚, we can write 𝐸Λ−1𝐸 ′ = Λ−1
(ℓ) ⊕ 0(𝑚−ℓ,𝑚−ℓ), where Λ−1

(ℓ) is an

ℓ × ℓ positive definite matrix, 0(𝑚−ℓ,𝑚−ℓ) is an 𝑚 − ℓ ×𝑚 − ℓ matrix of zeros, and

𝐸 is the product of elementary matrices that potentially implement row-swapping

transformations.

A feasible representation is a representation that additionally satisfies condition (e). We

can then define 𝐸Λ𝐸 ′ = Λ(ℓ) ⊕∞𝐼(𝑚−ℓ) and so any feasible representation can be written

16 It is not too difficult to expand this definition to include rank deficient 𝑍, but these cases are not
important for our purposes and including them would complicate the exposition that follows.
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as a vector 𝑦+ in the following form:

𝑦+ = 𝑑 + 𝑍𝛼 + 𝜀, 𝜀 ∼ 𝑁(0,Λ) (12)

This definition is still somewhat loose, but it is understood that the agent simply does not

process any updated data regarding the components of 𝑦+ with infinite noise variance.17

We refer to a feasible representation as “proper” if ℓ = 𝑚, so that Λ−1 is positive definite,

and as improper if ℓ < 𝑚, so that Λ−1 is only positive semidefinite. Since the block of

𝑦+ with infinite noise variance corresponds to variables for which no data is processed by

the agent, every improper representation can be made proper simply by eliminating the

improper block and considering a reduced representation of dimension ℓ.

Definition 13: Given a feasible representation (𝑑, 𝑍,Λ−1), the reduced form of that repre-

sentation is denoted (𝑑(ℓ), 𝑍(ℓ),Λ
−1
(ℓ)), where ℓ and Λ−1

(ℓ) are as defined in Definition 12 part

(e), and 𝑑(ℓ) and 𝑍(ℓ) contain the first ℓ rows of 𝐸𝑑 and 𝐸𝑍, respectively. If the feasible

representation is denoted 𝑦+, then its reduced form is simply the first ℓ rows of 𝐸𝑦+.

Since Λ−1
(ℓ) is positive definite by construction, the reduced form of a feasible representation

is proper. As a consequence, we can now give results for proper representations that auto-

matically extend to the larger class of feasible representations through the reduced form of

the latter.

A lower bound for the dimension of any representation is given in Lemma 10.

Lemma 10:

a. The minimum dimension of any representation is the rank of the solution, so that

𝑚 ≥ 𝑟.

b. The dimension of any proper feasible representation is equal to the rank of the solu-

17 For example, even though the row and column interchange operations are well defined, constructing Λ
as in the formula requires interpreting the product of zero and infinity as equal to zero.
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tion, so that 𝑚 = 𝑟.

Finally, we note that every feasible representation has a corresponding innovation represen-

tation that can be written as 𝑣+ = 𝑦+−𝐸[𝑦+ | ℐ−], and that every innovation representation

is a feasible representation in its own right denoted by (−𝑍𝑎−, 𝑍,Λ
−1).

Implicit in the definition of a representation is the requirement that the no-formatting con-

straint be satisfied, since Λ−1 will be positive semidefinite if and only if 𝑃−−𝑃+ is positive

semidefinite. If we allowed the no-forgetting constraint to be violated, then we would have

to admit representations containing noise terms with negative variances associated with one

or more linear combinations. If the no-forgetting constraint is just satisfied, then according

to our definition a representation does exist, but Λ−1 will be singular. This implies that any

representation must include a noise term with infinite variance associated with one or more

linear combinations. This is not invalid, since it simply implies that the agent processes no

new information about those combinations, but it does compel us to make a distinction be-

tween feasible and infeasible representations. This is because if those linear combinations

associated with infinite variance are not separable in the representation from those com-

binations associated with finite variance, a meaningful noise term cannot be constructed.

For this reason, the feasible representations exactly formalize the ways in which one could

meaningfully understand the processing of incoming data by a rationally inattentive agent.

The infeasible representations are mathematically valid objects, but they do not provide

insight into the mechanism of information processing by an agent.

We can now use the class of feasible representations to understand the solution to the static

RI-LQG tracking problem as well as the corresponding action.

Theorem 5: Given a proper feasible representation (𝑑, 𝑍,Λ−1) and associated innovation

representation denoted 𝑣+, the solution to the static RI-LQG tracking problem can be writ-
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ten as:

𝑎+ = 𝑎− + 𝐾𝑣𝑣+ (13)

𝑃+ = (𝐼 −𝐾𝑣𝑍)𝑃−

where 𝐾𝑣 = 𝑃−𝑍
′(𝑍𝑃−𝑍

′ + Λ)−1.

These formulas will be familiar as the updating step of the Kalman filter, and, accordingly,

as similar to the solution to the LQG signal extraction problem discussed above. Crucially,

though, note that the signal extraction problem computes the optimal unknown action 𝑎+

for a given observation 𝑦+. In our case, the solution to the static RI-LQG tracking problem

yields a given action 𝑎+ and we had to derive the corresponding set of representations that

could be considered as generating it. This point is important because the fundamental for a

rationally inattentive agent is the action itself, derived as a solution to the tracking problem,

and it is unnecessary to posit an “observation” vector. While it is often useful to consider

the problem as if the agent has processed the data as a particular representation, it must be

remembered there are many such representations that would be equally valid.

5.1.1 Illustration: simplified vector space
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Figure 4: Visualization of the static RI-LQG tracking problem, solution, action, and repre-
sentations in a simplified vector space

We can illustrate the algebraic approach using simplified vectors and vector spaces that
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admit a graphical representation. In analogy with a univariate random variable, we consider

a target 𝛼 in the encompassing space 𝒱 = R2. The problem is then to find an action 𝑎+ ∈

R2 that minimizes the (squared) Euclidean distance between target and action, 𝑑(𝛼, 𝑎+) =

⟨𝛼 − 𝑎+, 𝛼 − 𝑎+⟩. We will make two simplifications. First, since this is analogous to a

univariate problem, the loss matrix 𝑊 is 1 × 1, and we will normalize it to unity. Second,

we will ignore prior information so that 𝑎− = 0 and 𝒲− = {0}; this will imply that

𝒲* = 𝒲+.18

Our first step is as before: the form of any optimal action will be a projection on a subspace

𝒲+ ⊆ R2. We can then write the orthogonal decomposition 𝛼 = 𝑎++𝜂, where 𝜂 ∈ 𝒲⊥
+ ⊆

R2. The vector 𝜂 represents tracking error, and the loss function can be interpreted as

minimizing the length of the tracking error vector: 𝑑(𝛼, 𝑎+) = ⟨𝜂, 𝜂⟩, so this is the familiar

sum of squared errors loss function. Now, the inner product concept in this simplified space

is analogous to the concept of covariance in the full problem, and so we have ⟨𝛼, 𝛼⟩ = 𝑃−,

⟨𝑎+, 𝑎+⟩ = 𝑃− − 𝑃+, and ⟨𝜂, 𝜂⟩ = 𝑃+. Thus, as before, our tracking objective is to

minimize 𝑃+. The positive semidefiniteness constraints from the full problem are easily

understood in this context as requiring valid action and error vectors (i.e. that these vectors

must have nonnegative lengths).

For this illustration we will set 𝛼 =

[︂
0 1

]︂′
, and in Fig. 4 (a) we show an example of

vectors 𝑎(1)+ , and 𝜂(1) that satisfy the definition of 𝑎+ as a linear projection for some value

𝑃
(1)
+ . We have also shown the corresponding subspaces 𝒲(1)

+ and 𝒲⊥(1)
+ , and it is easy to

see that 𝑎+ is the projection of 𝛼 onto 𝒲+, while 𝜂 is the residual. In Fig. 4 (b), we show a

different set of action and error vectors that satisfy the above definition, but for a different

value 𝑃
(2)
+ . Because the length of 𝜂(2) is smaller, these new vectors must correspond to

decreased posterior uncertainty: 𝑃 (2)
+ < 𝑃

(1)
+ . Since 𝑃+ defines the length of 𝜂, it is easy

to visualize how it is that 𝑃+ specifies the vector space 𝒲+ and so ties down the posterior

18 We could extend the example to include a nontrivial prior, but it would require more complicated
graphics that would obscure our primary goal.
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information set ℐ+.

The remaining problem, analogous to Definition 1, is to select the optimal length of the

error vector, 𝑃+, subject to either a constraint 1
2

log𝑏(𝑃−/𝑃+) ≤ 𝜅 or a fixed cost 𝜆 of length

reduction. It is interesting to note that in the case of univariate Gaussian random variables,

the mutual information defining the analogous constraint can be written as 1
2

log𝑏 1/(1−𝜌2)

where 𝜌 denotes correlation. Here, correlation is analogous to the cosine of the angle

between the target and action, defined by cos(𝜃) = ⟨𝛼,𝑎+⟩
‖𝛼‖‖𝑎+‖ . Thus, another way to write

the constraint for this example would be in terms of the angle between action and target, to

illustrate this, we have indicated the corresponding angles in Fig. 4 (a) and (b).

The solution to this problem is mechanically the same as in Theorems 1 and 2. Since we set

𝑊 = 1, we have 𝑃+ = min{𝜆, 𝑃−}. Then, given the form of 𝑎+ and a solution 𝑃+, we can

construct the vector space 𝒲+ and define the class of representations. To do so, consider

an arbitrary 𝑦 ∈ R2. We have 𝒱𝛼 = span(

[︂
0 1

]︂′
) = {𝑍

[︂
0 1

]︂′
| 𝑍 ∈ R}, so that we

can write 𝑦 = 𝑍𝛼 + 𝜁 , where 𝜁 ∈ span(

[︂
1 0

]︂′
) = {𝑐

[︂
1 0

]︂′
| 𝑐 ∈ R}. Because we set

𝒲− = {0}, we must have proj𝒲−
𝑦 = 0 so that 𝑣+ = 𝑦 and 𝜀 = 𝜁 , with ⟨𝜀, 𝜀⟩ = 𝑐2 ≡ Λ.

Now, for a pair (𝑍,Λ) to be valid, it must satisfy 𝑍2/Λ = 1/𝑃+ − 1/𝑃−. For any solution

𝑃+, the right hand side is fixed, so that larger elements 𝑍 require larger Λ. Finally, for any

valid pair (𝑍,Λ), the associated innovation representation can be taken as a basis vector

defining the subspace as 𝒲* = span(𝑣+). In Fig. 4 (c), we plot representations 𝑦(3)+ = 𝑣
(3)
+

and 𝑦
(4)
+ = 𝑣

(4)
+ arising from two valid pairs (𝑍(3),Λ(3)) and (𝑍(4),Λ(4)). It is easy to see

that any valid representation must lie in the subspace 𝒲+ and, conversely, the action 𝑎+

will always be a projection onto the subspace spanned by a valid representation (and, more

generally, also any prior information).
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5.2 The fundamental and canonical representations

In this section, we present several important representations.

Definition 14: The fundamental representation is defined by 𝑑 = 0, 𝑍 = 𝐼 , and Λ−1
𝑓 =

𝑃−1
+ − 𝑃−1

− and is denoted (0, 𝐼,Λ−1
𝑓 ). If the fundamental representation is feasible, we

write it as:

𝑦𝑓 = 𝛼 + 𝜀𝑓 , 𝜀𝑓 ∼ 𝑁(0,Λ𝑓 ) (14)

If the solution to the static RI-LQG tracking problem is full rank then the fundamental rep-

resentation will be feasible, and also proper, but more generally it will usually be infeasible

except in cases that exhibit a separation across the prior covariance and loss matrices that

extends also to the posterior.

It is tempting to view the fundamental representation as the most straightforward represen-

tation, because it corresponds to the “true (fundamental) target plus white noise” concept

often considered in the rational inattention literature. From the perspective of the agent,

however, it is more natural to consider a representation based on the canonical synthetic

target, because this latter target encapsulates the information of importance. Not only that,

but the fundamental representation is often infeasible, whereas it will turn out that such a

“canonical representation” will always be feasible.

Definition 15: The canonical representation is defined by 𝑑𝑐 = 0, 𝑍𝑐 = 𝑆, and Λ−1
𝑐 =

(𝑁+)−1 − 𝐼 and is denoted (0, 𝑍𝑐,Λ
−1
𝑐 ). We write it as:

𝑦𝑐 = 𝛽𝑐 + 𝜀𝑐, 𝜀𝑐 ∼ 𝑁(0,Λ𝑐) (15)

where 𝛽𝑐 = 𝑆𝛼 is the canonical synthetic target. Because Λ−1
𝑐 is diagonal, the canonical

representation is always feasible.
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The canonical representation corresponds to “true (canonical synthetic) target plus white

noise”. While the fundamental target describes the shocks as they appear in the economy,

the canonical target describes synthetic shocks as they matter - separately - to the agent.

Because of this, it is conceivable how the agent could operationalize the solution to their

problem in terms of this representation, by considering each component separately and

choosing whether and how much to pay attention to each by adjusting the variance of the

information processing noise.

Although the canonical representation is always feasible it is not always proper, because

the agent may process no information about some components. However, by applying

Definition 13, we can always construct a reduced canonical representation that is proper.

Definition 16: We write the reduced form of canonical representation as (0, 𝑍𝑟,Λ
−1
𝑟 ) and

denote it by 𝑦𝑟.

This reduced canonical representation is perhaps the most useful representation, since it

corresponds to the canonical target, contains a noise term with a finite diagonal covariance

matrix, and can always be used to construct the action, by application of Lemma 6 and

Theorem 3.

5.3 Representation form of the static RI-LQG tracking problem

We can now state an alternative form of the static RI-LQG tracking problem, which is in

terms of selecting a representation rather than the posterior covariance.
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Definition 17: The representation form of the static RI-LQG tracking problem is:

min
𝑍,Λ−1

𝑡𝑟(𝑊𝑃+) + 𝜆(ln|𝑃−| − ln |𝑃+|) (16)

s.t. 𝛼 | ℐ− ∼ 𝑁(𝑎−, 𝑃−)

Λ−1 ≥ 0

𝑃+ = (𝑍 ′Λ−1𝑍 + 𝑃−1
− )−1

This formulation requires joint solution in 𝑍 and Λ−1, and it is primarily of interest because

many examples in the rational inattention literature use a similar form. One difficulty with

this formulation is that the solution is not unique. For example, if (𝑍,Λ−1) is a solution

then so is (𝑋𝑍, (𝑋Λ𝑋 ′)−1) for every nonsingular conformable matrix 𝑋 . Possibly for this

reason, this formulation of the problem is often split into two parts, and an optimal 𝑍 is

solved for first. With some optimal 𝑍 fixed, an associated optimal Λ−1 can be solved for.

5.4 Representation form of the action

We can also now characterize the action in terms of specific representations, and derive

the results we simply asserted when previously describing the action. From Theorem 5,

for any feasible innovation representation (−𝑍𝑎−, 𝑍,Λ
−1) we have 𝑎+ = 𝑎− + 𝐾𝑣𝑣+,

and we can extend this to any feasible representation by writing 𝑣+ = 𝑦+ − 𝑍𝑎− so that

𝑎+ = (𝐼 − 𝐾𝑣𝑍)𝑎− + 𝐾𝑣𝑦+. If 𝑍 has full row rank, then we can further write 𝑎+ =

(𝐼 − 𝐾𝑣𝑍)𝑎− + 𝐾𝑣𝑍(𝛼 + 𝑍−𝜀) where 𝑍− denotes the Moore-Penrose pseudo inverse.

From this it is not hard to show that 𝐾 = 𝐼 − 𝑃+𝑃
−1
− = 𝐾𝑣𝑍, and so by defining 𝛼̂ =

𝛼+𝑍−𝜀, we have the formulation presented originally. We emphasize that even though 𝛼̂ is

generally not a feasible representation, the action 𝑎+ is always valid and the weight matrix

𝐾 is always well-defined. This underscores once more the result that the representation

of the data in an observation-like form is inessential to the solution of the static RI-LQG

54



tracking problem. If it happens that 𝑦𝑓 is a feasible representation, then 𝛼̂ = 𝑦𝑓 , and we

have 𝑎+ = (𝐼 − 𝐾)𝑎− + 𝐾𝑦𝑓 . However, we can always construct the action using some

feasible representation. In particular, if we consider the canonical representation, we have

𝑎+ = (𝐼−𝐾𝑐𝑍𝑐)𝑎−+𝐾𝑐𝑦𝑐 and it is easy to show that 𝐾𝑐 = 𝑅(𝐼−𝑁+), and a little algebra

brings us to either Lemma 6 or Theorem 3. Finally, these results could be easily rewritten

in terms of the proper feasible representation 𝑦𝑟, since 1 − 𝑛+
𝑖 = 0 for 𝑖 = 𝑟 + 1, . . . , 𝑛.

6 Application: rationally inattentive price-setting

In this section, we consider the model of rationally inattentive price-setters introduced by

Maćkowiak and Wiederholt (2009), which we will refer to as MW. While our analytic

results only extend to the static version of the problem, this has become a useful benchmark

case. First, we apply the method derived in this paper to solve the problem formulated by

MW in which a fixed capacity of attention is employed along with a restriction that amounts

to requiring a diagonal posterior covariance. With the more general solution method now

available to us, we can also consider three alternative formulations, and we discuss how the

results change in each variant.

The basic setup considers a unit mass of monopolistically competitive firms indexed by

𝑖, each with identical profit function 𝜋(𝑃𝑖𝑡, 𝑃𝑡, 𝑌𝑡, 𝑍𝑖𝑡) where 𝑃𝑖𝑡 is the price of firm 𝑖’s

differentiated good, 𝑃𝑡 is the aggregate price level, 𝑌𝑡 is real aggregate demand, and 𝑍𝑖𝑡

is a firm-specific productivity shock. We assume an exogenous process for nominal ag-

gregate demand, 𝑄𝑡 = 𝑃𝑡𝑌𝑡. Denote a second-order approximation to this profit function

by 𝜋̃(𝑝𝑖𝑡, 𝑝𝑡, 𝑦𝑡, 𝑧𝑖𝑡) where the lower case variables denote log-deviation from nonstochastic

steady-state. The aggregate price is log-approximated as 𝑝𝑡 =
∫︀ 1

0
𝑝𝑖𝑡𝑑𝑖. The optimal price
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under perfect information is:

𝑝◇𝑖𝑡 =
𝜋̂14

|𝜋̂11|
𝑧𝑖𝑡 +

𝜋̂13

|𝜋̂11|
𝑞𝑡 +

(︂
1 − 𝜋̂13

|𝜋̂11|

)︂
𝑝𝑡

where 𝜋̂𝑖𝑗 denotes a second partial derivative of the profit function evaluated at the non-

stochastic steady-state. It is not hard to see that under perfect information, equilibrium

yields 𝑝𝑡 = 𝑞𝑡. To extend this to incorporate imperfect information, we follow MW in as-

suming that firms set prices to track the perfect information price but are rationally inatten-

tive. Because the approximate profit function is quadratic, this is in the form of an RI-LQG

tracking problem. Here we focus on the static case, and so we assume that 𝑧𝑖𝑡 and 𝑞𝑡 are

Gaussian white noise with variances 𝜎2
𝑧 and 𝜎2

𝑞 , and that 𝑧𝑖𝑡 ⊥ 𝑞𝑡.19 As described above,

we know that the form of the action will be the conditional expectation20 𝑝*𝑖𝑡 = 𝐸[𝑝◇𝑖𝑡 | ℐ+]

and, given this form of the solution, the expected loss in profits due to setting a suboptimal

price will be:

𝐸[𝜋̃(𝑝◇𝑖𝑡, 𝑝𝑡, 𝑦𝑡, 𝑧𝑖𝑡) − 𝜋̃(𝑝*𝑖𝑡, 𝑝𝑡, 𝑦𝑡, 𝑧𝑖𝑡) | ℐ−] =
|𝜋̂11|

2
𝐸[(𝑝◇𝑖𝑡 − 𝑝*𝑖𝑡)

2 | ℐ−]

Based on the form of the perfect information equilibrium aggregate price, we follow a

guess-and-verify approach to solve for the imperfect information equilibrium, guessing

that 𝑝𝑡 = 𝛾𝑞𝑡.21 Then firm 𝑖 will set their price according to:

𝑝*𝑖𝑡 = 𝐸

[︂
𝜋̂14

|𝜋̂11|
𝑧𝑖𝑡 +

𝜋̂13

|𝜋̂11|
𝑞𝑡 +

(︂
1 − 𝜋̂13

|𝜋̂11|

)︂
𝛾𝑞𝑡 | ℐ+

]︂

19 Given the generality of the solution method derived in this paper, it is no longer essential that 𝑧𝑖𝑡 and
𝑞𝑡 be independent, but we maintain this assumption for comparison with Maćkowiak and Wiederholt (2009).

20 In the equation for the imperfect information case, Maćkowiak and Wiederholt (2009) condition on
a vector of signals 𝑠𝑡𝑖. For the reasons described earlier in this paper, we use the more general posterior
information set ℐ+.

21 Maćkowiak and Wiederholt (2009) write 𝑝𝑡 = 𝛼𝑞𝑡, but we use 𝛾 in place of 𝛼 to avoid confusion with
the fundamental target.
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This is a best response function given a particular 𝛾, and the equilibrium solution repre-

sents a fixed point. For a given 𝛾, the rational inattention problem be written in the form

of Definition 1, where the target vector is 𝛼𝑖𝑡 =

[︂
𝑧𝑖𝑡 𝑞𝑡

]︂′
, and we can define a weight

vector 𝑤 = (𝑤𝑧, 𝑤𝑞)
′ =

(︁
𝜋̂14

|𝜋̂11| , 𝛾 + (1 − 𝛾) 𝜋̂13

|𝜋̂11|

)︁′
so that the loss function is defined by

the positive semidefinite matrix 𝑊 = |𝜋̂11|
2

𝑤𝑤′; note that rank(𝑊 ) = 1. We assume

that agents have no special prior knowledge, so that 𝛼𝑖𝑡 | ℐ− = 𝛼𝑖𝑡 ∼ 𝑁(0,Ω), where

𝑃− = Ω = diag{𝜎2
𝑧 , 𝜎

2
𝑞}.

At this point, MW make the additional assumption that firms must pay attention to 𝑧𝑖𝑡 and

𝑞𝑡 separately; following them, we refer to the this as the independence assumption. We

will expand on their results by considering four cases: with or without the independence

assumption, and employing either fixed capacity or fixed marginal cost of attention. Since

our framework immediately handles either a fixed capacity or a fixed marginal cost formu-

lations, we need only now describe how to modify the problem and solution to impose the

independence assumption.

It is most straightforward to introduce the independence assumption using the representa-

tion form of the problem given in Definition 17, because this assumption is most naturally

interpreted as a limit on the form that representations (or “signals”, in their terminology)

may take. The formalization of the independence assumption of MW requires that any

representation form of the solution has both 𝑍 and Λ−1 as diagonal matrices. The im-

plications for the posterior covariance matrix are easy to see by considering the equation

𝑃−1
+ = 𝑍 ′Λ−1𝑍 + 𝑃−1

− . Combined with the assumption that 𝑧𝑖𝑡 ⊥ 𝑞𝑡, this requires that

in any solution the posterior covariance matrix must be diagonal. However, it is also clear

that the independence assumption does not put restrictions on the diagonal elements of

𝑃−1
+ . This can be stated as follows: the independence assumption restricts the eigenvectors

of 𝑃+ but not the eigenvalues, and, in this example, this amounts to requiring that 𝑄 = 𝐼 ,

where 𝑄 is as defined in Lemma 2.
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Figure 5: Illustrations of possible behavior in the rational inattention price-setting model

It might seem at first that our solution method cannot be applied here, because 𝑄 is the

matrix of eigenvectors of 𝑉 = 𝐿′𝑊𝐿, and it is clear that this matrix will not be diagonal,

given the loss matrix derived above. However, the portion of the objective function that

is responsible for the eigenvectors of the posterior covariance matrix is 𝑡𝑟(𝑊𝑃+) and it

is not hard to show that the independence assumption requires that this term be equal to

𝑤2
𝑧𝜎

2
𝑧𝑛

+
1 + 𝑤2

𝑞𝜎
2
𝑞𝑛

+
2 . This suggests that we can simultaneously impose 𝑄 = 𝐼 while still

applying the basic structure developed in this paper by employing a different loss matrix,

𝑊𝐼 = diag(𝑤2). For this particular example, this is a way of imposing the independence

assumption while still allowing us to employ Theorems 1 and 2 to achieve the solution.

We now consider four cases. The first two consider the fixed marginal cost and fixed capac-

ity formulations in the general case, while the second two proceed under the independence

assumption. To conserve space, we relegate the details of the solutions to Appendix B,

but broadly the solution involves two steps. We first take 𝛾 as given and solve the static
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RI-LQG tracking problem. Then, since this yields attention allocations that themselves de-

pend on 𝛾, the second step is to solve the fixed point problem and find equilibrium values

of 𝛾. Although there are many interesting differences between these models, due to space

constraints we focus here on only three: (1) the definition of the canonical synthetic target,

(2) the responsiveness of agents to the two types of shocks, and (3) the values of 𝛾 in equi-

librium. We are most interested in highlighting the difference between the general case and

the case under the independence assumption; a few selected illustrations appear in Fig. 5

and will be discussed below.

The first, and most obvious, difference between these cases is the resultant canonical syn-

thetic target. This is an important difference, because the components of this target define

the objects of attention for rationally inattentive agents. In the general case, there is a single

canonical target that consists of the optimal price, while under the independence assump-

tion there are two canonical targets: the idiosyncratic and aggregate shocks (this latter fact

was exactly the goal of the assumption).22 The canonical targets for each case are visu-

alized in the upper left panel of Fig. 5. Both choices may appear reasonable, but while

MW advocate for the independence assumption, we argue that the general case should be

preferred; this issue is considered in detail in the next section. For now, we focus on an

important practical effect, that the two cases lead to a qualitative difference in the form of

the posterior uncertainty chosen by agents.

We showed above that uncertainty is only reduced for the space spanned by the canonical

targets to which the agent actually pays attention. Here, under the independence assump-

tion, this space can include both the idiosyncratic and aggregate shocks, but in the general

case the space can only be a hyperplane corresponding to a single particular linear com-

bination of the shocks. This difference in the dimensions of the posterior vector spaces is

also apparent in the upper left panel of Fig. 5. The implication of this is that as the cost of

22 Technically even in the general case there are two components to the canonical synthetic target, but
the agent never pays attention to the second component and it is defined only by its orthogonality to the first
component.
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attention falls to zero (or the capacity rises to infinity), under the independence assumption

the agent will become fully informed about the idiosyncratic and aggregate shocks sepa-

rately, but in the general case the agent will only become fully informed about the specific

linear combination that is relevant to their economic problem, so that some uncertainty will

remain about the shocks themselves. Thus the independence assumption yields subopti-

mal behavior for the agent, since they are acquiring costly information that they do not

use. Specifically, for any given parameterization, posterior uncertainty about the optimal

price and the objective function itself (both of which the agent wishes to reduce as much as

possible) will be higher given the independence assumption, although posterior uncertainty

about either the idiosyncratic or aggregate shocks individually will be higher in the general

case.

The second difference between these cases that we consider is the implied responsiveness

of rationally inattentive agents to shocks. To compute the responsiveness to a shock to the

optimal price, we use the result (derived in the appendix) that for all the cases considered

above, we can write the optimal posterior in the form

𝑝*𝑖𝑡 = (1 − 𝑛+
𝑧 )𝑤𝑧𝑧𝑖𝑡 + 𝛾𝑞𝑡 + 𝜀

where 𝛾 = (1 − 𝑛+
𝑞 )𝑤𝑞 and 𝜀 is a mean zero noise term whose variance may differ under

the various cases. For the general case, the solution imposes 𝑛+
𝑧 = 𝑛+

𝑞 , whereas under

the independent assumption they may differ. Recalling that the perfect information optimal

price is 𝑝◇𝑖𝑡 = 𝑤𝑧𝑧𝑖𝑡+𝑞𝑡, we can measure the responsiveness of firms to idiosyncratic shocks

as (1 − 𝑛+
𝑧 ) and to aggregate shocks as 𝛾. These values are between zero and one, and,

since under perfect information both of these are equal to one, they describe the fraction of

a shock reflected in the action of a rationally inattentive agent.

One feature of particular interest in MW and the related literature is whether it is possible

that firms exhibit conditional responsiveness; that is, high responsiveness to idiosyncratic
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shocks and low responsiveness to aggregate shocks. The key result of MW is that under the

independence assumption, this can be achieved if firms pay close attention to idiosyncratic

shocks (so that 𝑛+
𝑧 is close to zero) but they do not pay close attention to aggregate shocks

(so that 𝑛+
𝑞 is close to one and hence 𝛾 is close to zero). In the general case, since 𝑛+

𝑧 = 𝑛+
𝑞

is imposed, it is more difficult to achieve this conditional response. Using a calibration

based on that of MW, we compute the difference in responsiveness, (1 − 𝑛+
𝑧 ) − 𝛾, across

a range of values for the marginal cost and capacity parameters. We plot these values in

the upper right panel of Fig. 5 for the fixed capacity formulations. Under the indepen-

dence assumption, we find that an arbitrary difference can be achieved for some value of

the marginal cost or fixed capacity parameters, and moreover that one can achieve any dif-

ference while also requiring that firms respond nearly perfectly to idiosyncratic conditions.

This confirms the result of MW. In the general case, for this calibration, we find that the

maximum difference is about 45 percentage points, and that this difference occurs when

firms respond to about 75 percent of idiosyncratic shocks. This indicates that the indepen-

dence assumption is not crucial to achieving a conditional response to shocks. However,

since the contrast between attention paid to idiosyncratic and aggregate shocks is not as

stark in the general case, this suggests that a richer price-setting model may be required to

match empirical data on prices.23

The final issue that we will consider is how the equilibrium values of 𝛾 vary over the cases.

The term 𝛾 controls the strength of “coordination” across firms to aggregate shocks: if 𝛾

is high, then aggregate shocks have a high pass-through to all individual price-setting de-

cisions, whereas if 𝛾 is low, aggregate shocks have a smaller impact. The primary result

here is that for a given parameterization, 𝛾 will generally be lower under the independence

assumption than it would be in the general case. This is because under the independence as-

23 This is unsurprising, since the seminal model of Maćkowiak and Wiederholt (2009) was deliberately
left relatively simple to expose the key mechanism. For example, Fulton (2015) demonstrates that even with
the independence assumption, a more complex model is required to mitigate calibration issues that imply an
implausible differential between the volatility of aggregate and idiosyncratic shocks.
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sumption firms must pay attention to these shocks separately, and so part of the information

collected is unused. The end result is that it is more costly for firms to pay attention to ag-

gregate conditions. The two cases also display markedly different equilibrium behavior for

𝛾: in the general case 𝛾 is monotonic nonincreasing in the marginal cost of attention and,

at least for reasonable calibrations, there is a unique equilibrium; under the independence

assumption, there are regions in which decreases in the marginal cost of attention actually

decrease 𝛾, and there are regions admitting multiple equilibria. This richer equilibrium be-

havior appears in the latter case because there are two components of the canonical target

that end up receiving attention from the agent and so more complex interactions can arise.

Multiple equilibria can arise in this model due to the combination of strategic complemen-

tarities and endogenous information choice. Here, if most agents are paying attention to

aggregate shocks and set their prices accordingly, then the aggregate shock is actually rel-

evant for every individual agent, whereas if few agents pay attention to aggregate shocks

then the cost of ignoring them for any individual agent can be small. For the calibration

we consider, there is a region of parameterizations for 𝜆 in the fixed marginal cost case

under the independence assumption that implies three equilibria: a high equilibrium, a low

equilibrium, and one in which 𝛾 is zero. We illustrate the equilibrium values of 𝛾 in this

case along with the corresponding posterior uncertainty about the aggregate shock in the

lower left panel of Fig. 5.

A social cost of increased attention can arise in this model for a similar reason. If no firm

pays attention to aggregate shocks (so that in equilibrium 𝛾 = 0), then these shocks do

not enter the optimal price-setting equation, and all the posterior uncertainty faced by an

imperfectly informed agent is driven by the idiosyncratic shocks. As available attention

rises, if firms start to pay attention to aggregate shocks (so that 𝛾 becomes nonzero), these

shocks become relevant and this can result in an overall increase in posterior uncertainty.

Because the expected loss in profits increases with posterior uncertainty, this makes all
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firms worse off. This is illustrated in the lower right panel of Fig. 5.

As far as we are aware, rational inattention price-setting models incorporating multiple

equilibria or a social cost of increased attention have so far not been considered in the

literature - although there is of course a vast body of work dedicated to these issues in

imperfect information contexts generally. We hope that the solution method derived in this

paper may facilitate access to these interesting questions.

7 Modeling rational inattention problems

We have emphasized throughout this paper that caution must be used when making mod-

eling decisions in rational inattention models on the basis of intuition derived from signal

extraction models. In this section, we consider the extent to which the independence as-

sumption, and other assumptions with similar implications, can be justified without relying

on an inappropriate analogy.

The independence assumption, introduced in Maćkowiak and Wiederholt (2009) (MW),

has seen increased use in the rational inattention literature in recent years. A portion of

its appeal is surely because it made the rational inattention problem more tractable (and

indeed many authors do not provide a justification for its use), although this concern is

less relevant now that we have derived an exact solution in the static case. However, it

was introduced by MW not only for convenience but because they argued that the general

case of the model was implausible. As we showed above, the linear combination that de-

fines the relevant canonical target in the general case is exactly the linear combination that

generates the optimal price from the idiosyncratic and aggregate shocks; this implies that

the canonical representation is exactly of the form “profit-maximizing price plus noise”.

MW write that this “amounts to assuming that the decision maker can attend directly to the

profit-maximizing price” and suggest “we think that, in most economic contexts, decision
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makers cannot attend directly to the optimal decision ... The independence assumption is

the simplest way of modeling the idea that decision making is about first paying attention to

a variety of variables, and then combining these different pieces of information in a single

decision”. In this section, we take the opposite position and argue that the use of the general

case is justified, and that the appeal of the independence assumption comes exactly from

intuition derived from signal extraction models that does not apply to rationally inattentive

agents.

To consider this issue we will examine two related claims along the lines of those from

MW: (1) a rationally inattentive agent should not have access to a representation of the

form optimal action plus noise, and (2) there may be restrictions that prevent a rationally

inattentive agent from processing information in an arbitrary way. The first claim addresses

whether we should require restrictions on representations (for example the independence

assumption), while the second claim addresses whether we should allow restrictions.

There is no doubt that the first claim is plausible in the context of a signal extraction model,

in which case the word “representation” would be replaced with “observation”. It is cer-

tainly the case that datasets observed by agents are not usually in the form of their optimal

decision. In a rational inattention context, however, the data observed by the agent is the

fundamental target, and this target is indeed unrelated to the optimal action. The canonical

target, which is generally related to the optimal action, is not given to the agent but is con-

structed by them as they solve their problem and process the incoming data as efficiently

as possible. Thus the existence of a representation in the form optimal action plus noise is

not suspicious, because it is exactly constructed by the agent to capture the most important

aspects of available information. We therefore reject the first claim and suggest that the

default position for rational inattention models should not include assumptions restricting

the form of representations available to the agent.

The second claim is more complex, and in some ways it is an obviously true statement
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- it would be foolish to argue that real economic agents have no restrictions to data pro-

cessing other than cognitive capacity, particularly when the economic agent in question is

a firm, composed of many individuals. However, assessment of this claim must take into

account the context of the relevant abstraction proposed by the model. For the formulation

laid down in Sims (2003) and Sims (2010), rational inattention models “do not subsume or

claim to replace all previous economic models of costly information”; instead, the abstrac-

tion supposes the free availability of all underlying information so that any incompleteness

of information is entirely due to inattention on the part of the agent. This is only straight-

forward in stylized examples and so some license must clearly be extended if the rational

inattention approach is to be used for more complex situations and agents.

In designating a person as rationally inattentive, we model the person as a finite capacity

channel through which information flows. The abstraction of the model ignores purely

psychological quirks related to information processing so that agent’s behavior can be con-

sidered through the lens of optimization.24 Since all relevant data is assumed to be freely

available to the agent, imposition of the independence assumption would amount to the

imposition of such a psychological quirk. Justification of such an assumption would pre-

sumably need to be done on a case-by-case basis, rather than as a general rule for rational

inattention models. Ultimately, other frameworks, for example that of Woodford (2014),

may be more natural for problems in which these issues represent serious concerns.

Firms, on the other hand, are composed of many individuals and decision making processes

are often complex. It seems plausible that in designating a firm as rationally inattentive,

what we mean is that the firm’s operations generally are conceived as a finite capacity chan-

nel through which information flows, as individual managers consult a variety of informa-

tion sources to make a myriad of decisions. For the price-setting example, the in-depth

study of firm behavior in Zbaracki et al. (2004) suggests something like this. In this case,

would it not be reasonable to assume that firms have one group dedicated to understanding

24 This point is made clear in footnote 1 of Sims (2003).
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idiosyncratic shocks and a second group dedicated to understanding aggregate shocks, so

that the independence assumption would be justified? We argue not. The key consideration

for us is that these restrictions result in suboptimal outcomes as firms process costly but

irrelevant information, and yet there is no particular barrier that prevents firms from struc-

turing their decision-making in any way they please. While of course the actual structure

of firms is influenced by many considerations (for example economies of scale), it does not

seem clear that there is any general justification for the independence assumption. Despite

this, it is undeniable that complex agents surely face some restrictions on the way that they

process information, and in specific cases there may be evidence indicating some particular

deviation from the baseline model. Therefore, while we advocate for applying the rational

inattention model without ad hoc restrictions, we do not reject the second claim altogether.

8 Extension: dynamic RI-LQG tracking problems

The signal extraction and tracking problems can usually be extended as dynamic problems

in a straightforward manner, especially in the LQG case where the target follows the linear

transition law 𝛼𝑡 = 𝑇𝛼𝑡−1 + 𝜂𝑡 with 𝜂𝑡 ∼ 𝑁(0,Ω). This nests the static case when 𝑇 = 0.

The dynamic signal extraction problem can be solved recursively by the Kalman filter, and

a key feature is that at each stage the solution is given by a conditional expectation, which

we will denote 𝑎𝑡|𝑡 = 𝐸[𝛼𝑡 | 𝑦𝑡], where 𝑦𝑡 collects the (exogenously given) observations

{𝑦𝜏}𝜏≤𝑡. To construct a dynamic tracking problem, we again shed the exogenously imposed

observation vector 𝑦𝑡, and we also now assume that the agent discounts the future at rate 𝛽,

so that the problem is:

min
{𝑎𝑡|𝑡}𝑡≥0

𝐸

[︃
∞∑︁
𝑡=0

𝛽𝑡𝑑(𝛼𝑡, 𝑎𝑡|𝑡) | ℐ0

]︃
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along with the transition equation. By introducing an information constraint at each time

period we can construct a rational inattention problem and proceed in a similar fashion to

the static case. Sims (2003) and Sims (2010) show that at each stage it will be optimal

to set 𝑎𝑡|𝑡 = 𝐸[𝛼𝑡 | ℐ𝑡], and we have 𝐼(𝛼𝑡, 𝑎𝑡|𝑡 | ℐ𝑡−1) = 1
2

(︀
log𝑏 |𝑃𝑡| − log𝑏 |𝑃𝑡|𝑡|

)︀
where

𝑃𝑡 = 𝑉 𝑎𝑟(𝛼𝑡 | ℐ𝑡−1) and 𝑃𝑡|𝑡 = 𝑉 𝑎𝑟(𝛼𝑡 | ℐ𝑡). By using the transition law to derive the

predicted covariance matrix 𝑃𝑡+1, we can recursively define the dynamic RI-LQG tracking

problem.

Definition 18: the dynamic RI-LQG tracking problem, denoted (𝑊,𝑎−, 𝑃−, 𝑇,Ω), is:

min
𝑃𝑡|𝑡

𝑡𝑟(𝑊𝑃𝑡|𝑡) + 𝜆(ln |𝑃−| − ln |𝑃+|) + 𝛽𝜆 ln |𝑃𝑡+1| (17)

s.t. 𝛼 | ℐ− ∼ 𝑁(𝑎𝑡, 𝑃𝑡)

𝑃𝑡+1 = 𝑇𝑃𝑡|𝑡𝑇
′ + Ω

𝑃𝑡|𝑡 ≥ 0

𝑃𝑡 − 𝑃𝑡|𝑡 ≥ 0

Because the prior covariance matrix for time 𝑡+ 1, 𝑃𝑡+1, depends on the posterior at time 𝑡,

the dynamic problem features linkages across time that do not appear in the static problem:

decreasing uncertainty today makes it less costly to achieve a given level of uncertainty

tomorrow. It is immediate that for any given marginal cost of attention, more attention

will be allocated in the dynamic problem than would be allocated for the same problem

with 𝑇 = 0. Another feature of the dynamic problem that does not appear in the static

problem is that achieving equilibrium, if one exists, may take several periods. This is

because in the static problem, the prior was generally equal to the unconditional distribution

so repetitions were generally identical, whereas in the dynamic problem the prior evolves

from period to period and equilibrium is only reached when the prior 𝑃𝑡 is equal to the

predicted covariance 𝑃𝑡+1 constructed using the optimal posterior 𝑃𝑡|𝑡.
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It is easy to check that the first order condition for the time 𝑡 iteration of the dynamic

problem is:

𝑃−1
𝑡|𝑡 = 𝑊/𝜆 + 𝛽𝑇 ′𝑃−1

𝑡+1𝑇 (18)

Although the matrix 𝑃𝑡|𝑡 that solves this equation generally cannot be given explicitly, it

is not too hard to compute it numerically. However, as before, the first order condition

only solves the problem if the constraints are not binding. Similar to the static case, while

the first positive semidefiniteness constraint will always be satisfied, the no-forgetting con-

straint will usually be binding in the dynamic case. To understand why, first recall that

Lemma 4, associated with the static problem, suggests that the rank of the solution, will

always be less than the rank of the loss matrix; this result is not strictly true in the dynamic

case, although the intuition is still usually valid. Now, in order to map dynamic targets into

the form required by Definition 18, an augmented target usually has to be constructed in

order to satisfy the requirement of a linear first order transition equation. Thus although

the loss function is defined in terms of the original target, the loss matrix 𝑊 is defined in

terms of the augmented target; this generally introduces rows and columns of zeros, and

the result is that the loss matrix for most problems is not full rank.

For example, consider tracking an AR(2) target 𝛼𝑜
𝑡 = 𝜑1𝛼

𝑜
𝑡−1 + 𝜑2𝛼

𝑜
𝑡−2 + 𝜂𝑜𝑡 . In order to

put this into a form amenable to Definition 18, we write:

𝛼𝑡 =

⎡⎢⎣ 𝛼𝑜
𝑡

𝛼𝑜
𝑡−1

⎤⎥⎦ , 𝑇 =

⎡⎢⎣𝜑1 𝜑2

1 0

⎤⎥⎦ , 𝜂𝑡 =

⎡⎢⎣1

0

⎤⎥⎦ 𝜂𝑜𝑡 , 𝑊 =

⎡⎢⎣1 0

0 0

⎤⎥⎦
Thus the no-forgetting constraint will almost always bind for dynamic problems and so the

first order condition will not provide the solution. Unfortunately, the method of Theorem 1

does not immediately help, because in the dynamic case the eigenvectors of 𝑃𝑡|𝑡 cannot be

completely decoupled from the eigenvalues. Finding a fully general analytic solution for
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the dynamic RI-LQG tracking problem remains an open problem. Despite this, if a solution

is found, for example numerically, many of the results derived this paper can be applied,

since they only depend on the conditional Gaussianity of prior and posterior. Analysis

can still proceed based on the generalized eigenvalue problem associated with the matrix

pencil (𝑃+, 𝑃−), where the generalized eigenvalues and left eigenvectors can be found by

applying simultaneous diagonalization. Thus Proposition 6 is still valid and the canonical

synthetic target is still well-defined, as is the rank of the solution and the associated defi-

nitions of information capacity allocations. The construction of the action as a projection

on an appropriately defined vector space also continues to hold, as does the concept of fea-

sible and proper representations. Of course, results that depend on the specific relation of

the generalized eigenvectors and eigenvalues to the loss matrix, especially Theorems 1 and

2, do not extend to the dynamic case.

In the special case of a one-dimensional target, it is sometimes possible to construct the

solution analytically, and for the important class of one-dimensional targets following an

ARMA(p, q) process under a fixed capacity constraint, an analytic solution has been de-

rived by Matejka et al. (2017). Although their setup is nominally different, their results

can be stated in the terms introduced here; we describe only a few. First, the rank of the

solution will always be 𝑟 = 1, and so the no-forgetting constraint will always bind except

possibly in the AR(1) case. Second, except for the AR(1) case, no solution admits a repre-

sentation of the form 𝑦𝑜𝑡 = 𝑍𝑜𝛼𝑜
𝑡 + 𝜀𝑜𝑡 where 𝛼𝑜

𝑡 is the one-dimensional ARMA(p, q) target,

although in each case there still exists some 1×𝑛 matrix 𝑍 such that there exists a feasible

representation 𝑦𝑡 = 𝑍𝛼𝑡 + 𝜀𝑡, where 𝛼𝑡 is an augmented target constructed to satisfy the

transition equation. Matejka et al. (2017) term this second result the “dynamic attention

principle”.

The solution of Matejka et al. (2017) is very promising, but it does not apply to the general

problem of Definition 18 in which agents must trade off between many target processes, and
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there is no way to expand their method to multivariate series without imposing an ad hoc

restriction like the independence assumption. One option is to solve the general problem

numerically as was done in examples given in Sims (2003) and Sims (2010). Unfortunately,

numerical optimization can prove difficult for even moderate sized systems. Instead, we

advocate an approximation suggested by the first order conditions. It is not hard to see

that a first order Taylor approximation in 𝜆 to the dynamic first order condition, around

the point of perfect information (𝜆 = 0), is equal to the static first order condition.25 We

suggest, then, that when the marginal cost of information is sufficiently low (or capacity

is sufficiently high), iterated application of the static solution given in Theorems 1 and

2 along with the transition equation, starting from an arbitrary prior, will yield a good

approximation of the full dynamic solution. Although we do not prove the result, it appears

that such iterations always converge to an equilibrium. This can be a particularly attractive

method because, in practice, most applications of RI-LQG problems have been associated

with 𝜆 close to zero.26 Finally, we note that for ARMA(p, q) targets, this approximation

could also be justified by appealing to Proposition 7 of Matejka et al. (2017).

Of course this approximation only imperfectly captures the full solution to the general

problem. Its key strength is that it takes into account intratemporal tradeoffs between target

processes, while its key weakness is that it fails to take into account intertemporal tradeoffs:

it ignores future benefits from reducing uncertainty today.27 One outcome of this is it will

tend to select higher levels of uncertainty than the analytic solution. For the same reason,

it will also run into the no-forgetting constraint sooner (at a higher marginal cost or lower

capacity) than would the analytic solution. In many cases of practical interest, however,

this static approximation will be quite good, as we illustrate below.

25 This approximation could alternatively be derived from an approximation around 𝛽 = 0; it thus effec-
tively imposes that individuals fully discount future uncertainty.

26 Some care must be taken when considering the scale of 𝜆, since it is actually the scale of 𝜆 relative to
the eigenvalues of the loss matrix 𝑊 (and, in some problems, potentially those of 𝑇 and Ω) that matters.

27 The approximation is not completely divorced from intertemporal issues since the prior, which influ-
ences the posterior in the static solution, evolves over iterations. It is also possible that the no-forgetting
constraint may be imposed or lifted as the prior changes.
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AR(1) AR(2) Parallel AR(1) VAR(1)
𝜅 𝑘1 𝑘2 𝜅 𝑘1 𝑘2 𝜅 𝑘1 𝑘2 𝜅

𝜆 = 10−4 Exact 6.64 6.64 0.00 6.64 0.21 0.46 7.20 0.83 0.65 7.58
Static 6.64 6.64 0.00 6.64 0.21 0.46 7.20 0.83 0.65 7.58
Ind. – – – – 6.64 6.64 13.29 6.64 6.64 13.29

𝜆 = 1 Exact 0.27 0.50 0.06 0.51 0.12 0.38 0.83 0.66 0.33 1.03
Static 0.16 0.36 0.09 0.36 0.13 0.31 0.72 0.56 0.43 1.01
Ind. – – – – 0.27 0.61 0.88 0.76 0.22 0.96

Table 1: Attention allocations in dynamic examples for the exact solution, the static ap-
proximation, and an approximation based on the independence assumption.

8.1 Illustration: goodness of approximation

In Table 1 we present a few examples demonstrating the accuracy of the static approxi-

mation (“Static”) compared to the exact solution of the problem (“Exact”) or the solution

under the independence assumption (“Ind.”), and we consider four examples: an AR(1)

process, an AR(2) process, a model with two separate (“parallel”) AR(1) processes, and a

bivariate VAR(1) process. In the former two cases, there is only a single variable to track,

while in the latter two cases, there are two variables to track and we assume that the agent

wishes to track the sum of the two variables.28 We apply the fixed marginal cost of attention

formulation of the problem with 𝛽 = 0.99, and consider two different costs: 𝜆 = 10−4 and

𝜆 = 1. We report the approximate information capacity allocated to processing the 𝑖-th

element of the fundamental target, 𝑘𝑖, as well as the total information processed, 𝜅.29

As could be expected, when the cost of information is low, the static approximation is prac-

tically identical to the full dynamic solution while when the cost is high, its performance

degrades. Imposition of the independence assumption drives the solution away from the ex-

act dynamic solution regardless of the information cost, but there is an especially marked

difference when the information cost is low. This is because, as described above in the

28 Since there is only a single variable in the AR(1) and AR(2) cases, the independence assumption does
not change the problem there.

29 In the AR(1) case, there is only a single variable of interest and 𝑘1 = 𝜅. In the AR(2) case, 𝑘1 refers to
the approximate information capacity allocated to processing the contemporaneous value of the target while
𝑘2 refers to the approximate information capacity allocated to processing the lagged value.
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prices example, a solution to the general problem will often reduce uncertainty only about

certain relevant linear combinations of the target, whereas a solution under the indepen-

dence assumption will reduce uncertainty about each target element separately.

The information capacity allocations in Table 1 provide one way of assessing the goodness

of the static approximation, but an alternative method is to directly examine the final effect

on the agent’s action. We will consider how a rationally inattentive agent responds to a one

unit innovation in each of the four example models. In particular, in Fig. 6 and Fig. 7, we

plot the difference between the true impulse response function of the model and the action

taken by the agent.30 We label this difference the “unresponsiveness” of the agent, because

it captures the portion of the impulse that the agent does not respond to. These figures

provide more evidence that the static approximation is very good when the marginal cost

of information is close to zero, and is often still quite good when the marginal cost of

information is relatively large.

One final interesting characteristic of these results can be found in the “Exact” solutions

to the AR(2) problem. For this problem, the agent is only concerned with tracking the

contemporaneous variable, and the lagged variable is associated with zero weight in the

loss matrix. When the cost of information is low (𝜆 = 10−4), the approximate capacity

allocated to processing the lagged variable is 𝑘2 ≈ 0. It might seem counterintuitive that

as attention becomes more costly there is an increase in the approximate capacity allocated

to processing the lagged variable, with 𝑘2 ≈ 0.06 when 𝜆 = 1. The reason for this can be

found in the first order condition to the dynamic problem: when 𝜆 is small, the effects of

transitional dynamics are dwarfed by the effect of 𝑊/𝜆, whereas when 𝜆 is larger they can

become important. Ultimately, the effect of transitional dynamics can induce the agent to

pay attention to variables that receive zero weight in the loss matrix as long as they help

predict the variables that are of interest. This is why the agent pays more attention to the

30 In all cases, we show the unresponsiveness to the object of interest; this does not necessarily correspond
to one of the fundamental targets. For the AR(1) and AR(2) models we show the responsiveness to the
contemporaneous value of process 𝛼1𝑡, while for the multivariate series we show the unresponsiveness 𝑤′𝛼𝑡.
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second component as attention becomes more costly, and it is exactly an illustration of what

Matejka et al. (2017) refer to as the “dynamic attention principle”.

9 Conclusion

In this paper, we describe the optimal allocation of attention by agents interested in tracking

multiple economic shocks each of which provides valuable information subject to a limited

ability to process incoming data. The key insight is that by constructing a transformation

of the economic shocks, we can simplify the problem, facilitate the solution, and ease the

interpretation of a wide variety of results. The transformed “canonical” shocks introduce

a decoupling that captures the independent aspects of the economic shocks as they matter

to the agent. Even in a complex multivariate setting with correlation between economic

shocks, for each of the canonical shocks the agent acts as a simple Bayesian updater, giving

some weight to the imperfectly processed incoming data while retaining some weight on

their prior. We show how these canonical shocks define a representation of the incoming

data that provides insight into how a rationally inattentive agent processes information.

Throughout, we carefully examine the similarities and differences between the rational

inattention problem and the classical signal extraction problem.

We apply our solution method to solve the static version of the rational inattention price-

setting problem, and find a richer set of equilibrium behavior than previously known, in-

cluding multiple equilibria and a social cost of increased attention by agents. We show how

our framework can be used to help inform rational inattention modeling decisions, and this

leads us to argue that the “independence assumption”, often employed in rational inatten-

tion models to make the model tractable, imposes unjustifiable restrictions on agents. At

the same time, the solution method developed in this paper all but eliminates the need for

such an assumption in the static case. Finally, we describe how our solution to the static
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problem can be used to approximate the solution to the dynamic problem, and moreover

show that this approximation is quite good in many cases of practical interest.
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10 Appendices

10.1 Appendix A: Proofs

10.1.1 Proof of Property 6

Simultaneously diagonalize 𝑃− = 𝑆 ′𝐼𝑆 and 𝑃+ = 𝑆 ′𝑁𝑆 as described in Lemma 1. Then:

𝐼(𝑋, 𝑌 | ℐ−) =
1

2
(log𝑏 |𝑃−| − log𝑏 |𝑃+|)

=
1

2
(log𝑏 |𝑆 ′𝐼𝑆| − log𝑏 |𝑆 ′𝑁𝑆|)

=
1

2
(log𝑏 |𝐼| − log𝑏 |𝑁 |)

=
1

2
log𝑏 |𝑁−1|

=
1

2

𝑛∑︁
𝑖=1

log𝑏

1

𝑛𝑖

10.1.2 Proof of Lemma 1

See Theorem 7.6.4 of Horn and Johnson (2012).

10.1.3 Proof of Lemma 2

This is a straightforward application of Lemma 1.

10.1.4 Proof of Theorem 1

Throughout this proof, the matrices 𝐿, 𝑀 , 𝑉 , 𝐷, and 𝑄 are as defined in Lemma 2. We

note at the outset that we can assume without loss of generality that 𝑃+ is positive definite,

since if it were not the objective function would grow without bound.
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Ignoring the no-forgetting constraint, simultaneously diagonalize 𝑃−1
+ and 𝑃−1

− as:

𝑃−1
+ = 𝑋 ′∆𝑋

𝑃−1
− = 𝑋 ′𝐼𝑋

where 𝑋 = 𝑍 ′𝑀 with 𝑍∆𝑍 ′ = 𝐿′𝑃−1
+ 𝐿, and denote ∆ = diag({𝛿𝑖}𝑛𝑖=1). Because 𝑃+ is

full rank, ∆ is nonsingular and we can define 𝑁 = ∆−1 = diag({𝑛𝑖}𝑛𝑖=1) where 𝑛𝑖 = 1/𝛿𝑖.

Denoting the objective function as 𝒪, we can rewrite it using the above decomposition and

applying Property 6 as:

𝒪 = 𝑡𝑟(𝑊𝑃+) + 𝜆
𝑛∑︁

𝑖=1

ln
1

𝑛𝑖

= 𝑡𝑟(𝑊𝐿𝑍𝑁𝑍 ′𝐿′) − 𝜆
𝑛∑︁

𝑖=1

ln𝑛𝑖

= 𝑡𝑟(𝑍 ′𝑉 𝑍𝑁) − 𝜆
𝑛∑︁

𝑖=1

ln𝑛𝑖

Notice that the matrix of eigenvectors, 𝑍, appears only in the first term. A standard result

is that minimizing the first term over unitary matrices 𝑍 yields 𝑍 = 𝑄 (recall that 𝑄𝐷𝑄′ =

𝑉 ), for any matrix 𝑁 . Thus the optimal 𝑍 contains the eigenvectors of 𝑉 = 𝐿′𝑊𝐿. This

also implies that 𝑋 = 𝑆 = 𝑄′𝑀 .

This allows us to further simply the objective function:

𝒪 = 𝑡𝑟(𝑄′𝑉 𝑄) − 𝜆

𝑛∑︁
𝑖=1

ln𝑛𝑖

= 𝑡𝑟(𝑄′(𝑄𝐷𝑄′)𝑄𝑁) − 𝜆
𝑛∑︁

𝑖=1

ln𝑛𝑖

= 𝑡𝑟(𝐷𝑁) − 𝜆

𝑛∑︁
𝑖=1

ln𝑛𝑖

=
𝑛∑︁

𝑖=1

𝑑𝑖𝑛𝑖 − 𝜆
𝑛∑︁

𝑖=1

ln𝑛𝑖
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We can also use the simultaneous diagonalization to simplify the no-forgetting positive

semidefiniteness constraint. First, note that if 𝑃− − 𝑃+ ≥ 0 if and only if 𝑃−1
+ − 𝑃−1

− ≥ 0.

Then from above, 𝑃−1
+ − 𝑃−1

− = 𝑆 ′(∆ − 𝐼)𝑆, and this is positive semidefinite if and only

if ∆ − 𝐼 ≥ 0. Since ∆ is diagonal and 𝑁 = ∆−1, this condition is satisfied if and only if

𝛿𝑖 ≥ 1 or 𝑛𝑖 ≤ 1 for 𝑖 = 1, . . . , 𝑛.

With this, the objective and the constraint can be separated into 𝑛 isolated problems, each

of which is of the form:

min
𝑛𝑖

𝑑𝑖𝑛𝑖 − 𝜆 ln𝑛𝑖 s.t. 𝑛𝑖 ≤ 1

If 𝑑𝑖 > 0, then this is a convex objective function with a linear inequality constraint, so the

solution, denoted by 𝑛+
𝑖 , is characterized by the Kuhn-Tucker conditions. The first order

condition yields 𝑛𝑖 = 𝜆/𝑑𝑖, and the full solution is:

𝑛+
𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝜆/𝑑𝑖 𝜆 ≤ 𝑑𝑖

1 otherwise

If 𝑑𝑖 = 0, then the problem is min𝑛𝑖
−𝜆 ln𝑛𝑖, and the solution sends 𝑛𝑖 → ∞, so that the

constraint is binding and 𝑛+
𝑖 = 1.

Defining 𝛿+𝑖 = 1/𝑛+
𝑖 and ∆+ = diag({𝛿+𝑖 }𝑛𝑖=1), we have solved for the optimal 𝑆 and ∆

that define 𝑃−1
+ , and in particular:

𝑃−1
+ = 𝑆 ′∆+𝑆

𝑃+ = 𝑅𝑁+𝑅′
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Finally, if 𝑑𝑖 ≥ 𝜆 ∀ 𝑖, then ∆+ = 𝐷/𝜆 and:

𝑃−1
+ = 𝑀 ′𝑄∆+𝑄′𝑀

= 𝑀 ′𝑄(𝐷/𝜆)𝑄′𝑀

= 𝑀 ′𝐿′(𝑊/𝜆)𝐿𝑀

= 𝑊/𝜆

10.1.5 Proof of first Corollary to Theorem 1

Let 𝑊 = 𝑤𝑤′ and define 𝑞 = 1
‖𝐿′𝑤‖𝐿

′𝑤. Then:

𝑃−1
+ = 𝑆 ′∆+𝑆

= 𝑃−1
− + 𝑆 ′(∆+ − 𝐼)𝑆

= 𝑃−1
− + (𝛿+1 − 1)𝑀 ′𝑞1𝑞

′
1𝑀

= 𝑃−1
− + (𝛿+1 − 1)

1

‖𝐿′𝑤‖2𝑊
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From above, we have:

𝑃−1
+ = 𝑃−1

− + (𝛿+1 − 1)𝑀 ′𝑞1𝑞
′
1𝑀

= 𝑀 ′ [︀𝐼 + (𝛿+1 − 1)𝑞1𝑞
′
1

]︀
𝑀

𝑃+ = 𝐿
[︀
𝐼 + (𝛿+1 − 1)𝑞1𝑞

′
1

]︀−1
𝐿′

= 𝐿
[︁
𝐼−1 − 𝐼−1𝑞1

(︀
(𝛿+1 − 1)−1 + 𝑞′1𝐼

−1𝑞1
)︀−1

𝑞′1𝐼
−1
]︁
𝐿′

= 𝐿
[︁
𝐼 −

(︀
(𝛿+1 − 1)−1 + 1

)︀−1
𝑞1𝑞

′
1

]︁
𝐿′

= 𝐿

[︃
𝐼 −

(︂
𝛿+1

𝛿+1 − 1

)︂−1

𝑞1𝑞
′
1

]︃
𝐿′

= 𝑃− − 𝛿+1 − 1

𝛿+1

1

‖𝐿′𝑤‖2𝑃−𝑊𝑃−

= 𝑃− − (1 − 𝑛+
1 )

1

‖𝐿′𝑤‖2𝑃−𝑊𝑃−

10.1.6 Proof of second Corollary to Theorem 1

We want to show that 𝑠′𝑖(𝑃+ − 𝑛+
𝑖 𝑃−) = 0 for each pair (𝑠′𝑖, 𝑛

+
𝑖 ).

From Lemma 2 we have 𝑃− = 𝑅𝐼𝑅′, and from Theorem 1 we have 𝑃+ = 𝑅𝑁+𝑅′. Since

𝑅 = 𝑆−1, then 𝑠′𝑖𝑅 is equal to a row vector with each element equal to zero except for the

𝑖-th element which is equal to 1, and so 𝑠′𝑖𝑅𝑁+ = 𝑛+
𝑖 𝑠

′
𝑖𝑅.

𝑠′𝑖(𝑃+ − 𝑛+
𝑖 𝑃−) = 𝑠′𝑖(𝑅𝑁+𝑅′ − 𝑛+

𝑖 𝑅𝐼𝑅′)

= (𝑛+
𝑖 𝑠

′
𝑖𝑅𝑅′ − 𝑛+

𝑖 𝑠
′
𝑖𝑅𝑅′)

= 0
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10.1.7 Proof of Theorem 2

Since Definition 1 is valid for the fixed capacity problem, except with 𝜆* = 2 ln(𝑏)𝜆 in-

terpreted as a Lagrange multiplier, the solution in Theorem 1 is valid in this case, but we

must also derive the value of the Lagrange multiplier at the solution. To do so, note that the

associated constraint is 1
2
(log𝑏 |𝑃−| − log𝑏 |𝑃+|) ≤ 𝜅 and, as in the proof of Theorem 1, we

can rewrite it as:

1

2

𝑛∑︁
𝑖=1

log𝑏 𝛿
+
𝑖 ≤ 𝜅

In any solution, all processing capacity will be used, so that this constraint will hold with

equality. Define 𝑟 such that 𝑑𝑖 > 0 for 𝑖 = 1, . . . , 𝑟 and 𝑑𝑖 ≤ 𝜆 for 𝑖 = 𝑟 + 1, . . . , 𝑛. Recall

from Theorem 1 that 𝛿+𝑖 = 1 for 𝑖 > 𝑟, and so the constraint is:

𝑟∑︁
𝑖=1

log𝑏 𝛿
+
𝑖 = 2𝜅

log𝑏

𝑟∏︁
𝑖=1

𝑑𝑖
𝜆

= 2𝜅

𝜆𝑟 = 𝑏−2𝜅

𝑟∏︁
𝑖=1

𝑑𝑖

𝜆 =

[︃
𝑏−2𝜅

𝑟∏︁
𝑖=1

𝑑𝑖

]︃ 1
𝑟

Since the choice of 𝑟 depends on 𝜆, we can compute 𝑟 in the following way. Initialize

𝑟 = 𝑛. First, compute the 𝜆 associated with 𝑟. If 𝑑𝑖 > 𝜆 for 𝑖 = 1, . . . , 𝑟, then this is the

solution. If ∃𝑑𝑖 ≤ 𝜆 with 𝑖 ≤ 𝑟, then set 𝑟 = 𝑟 − 1 and repeat these steps.

Notice that if 𝑟 = 1, then 𝜆 = 2−2𝜅𝑑1. As long as 𝜅 > 0 and 𝑑1 > 0 (and recall that 𝑑1 is

the largest eigenvalue, so only in completely degenerate problems will 𝜅 = 0 or 𝑑1 = 0),

we will have 𝑑1 > 𝜆. Thus, except for degenerate problems, it will always be optimal to

have 𝑟 ≥ 1.
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Finally, for 𝑖 ≤ 𝑟, we have:

𝛿+𝑖 = 𝑑𝑖𝜆
−1

= 𝑏
2𝜅
𝑟 𝑑𝑖

[︃
𝑟∏︁

𝑗=1

𝑑𝑗

]︃− 1
𝑟

Taking logs, we define:

𝜅𝑖 ≡
1

2
log𝑏 𝛿

+
𝑖 =

𝜅

𝑟
+ log𝑏

⎡⎣ √
𝑑𝑖∏︀𝑟

𝑗=1

√︀
𝑑𝑗

1/𝑟

⎤⎦
For 𝑖 > 𝑟, we have 𝛿+𝑖 = 1, so 𝜅𝑖 = 1

2
log𝑏 1 = 0.

10.1.8 Proof of Corollary to Theorem 2

Part (a):

We want to show that 𝜕𝜆
𝜕𝜅

< 0. The only difficulty is accounting for the fact that 𝑟 as a

function of 𝜅 acts like a step function.

Our first step is to notice that if the change in 𝜅 does not change 𝑟, then we have:

𝜕𝜆

𝜕𝜅
=

−2𝜅

𝑟

(︀
𝑏(−2𝜅/𝑟)−1

)︀ [︃ 𝑟∏︁
𝑖=1

𝑑𝑖

]︃1/𝑟

< 0

Our second step is to show that if 𝑟 is nondecreasing in 𝜅 (i.e. 𝑟 and 𝜅 move (weakly)

together), the result still holds. To see this, consider the two terms of 𝜆 separately.

a. It is easy to see that 𝜕2−2𝜅/𝑟

𝜕𝜅
< 0 and 𝜕2−2𝜅/𝑟

𝜕𝑟
< 0.

b. The second term is the geometric mean of (𝑑1, . . . , 𝑑𝑟), and by assumption we have

𝑑1 ≥ 𝑑2 ≥ · · · ≥ 𝑑𝑟 ≥ · · · ≥ 𝑑𝑛. An increase in 𝑟 will therefore introduce into the

geometric mean terms that are no larger than any of the existing terms; similarly, a
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decrease in 𝑟 will remove only the smallest existing terms. Thus, the term as a whole

the is nonincreasing in 𝑟. Since this term is independent of 𝜅, we have our result.

Our final step is to show that 𝑟 is nondecreasing in 𝜅. This follows directly from the first

step, above, and the algorithm for computing 𝑟. Consider an increase in 𝜅. At any iteration

of the algorithm, the proposed value for 𝜆 will be smaller than it was under the original

value of 𝜅, and so while the algorithm may terminate earlier, it certainly will not terminate

later. The reverse is true for a decrease in 𝜅. This yields the result.

Part (b):

See the last paragraph of the proof to part (a).

10.1.9 Proof of Lemma 3

Part (a): This follows directly from 𝛽𝑐 = 𝑆𝛼 and 𝛼 | ℐ+ ∼ 𝑁(𝑎+, 𝑃+).

Part (b): This follows directly from 𝛽𝑐 = 𝑆𝛼 and 𝛼 | ℐ− ∼ 𝑁(𝑎−, 𝑃−).

Part (c):

𝐸[(𝛽𝑐 − 𝑏𝑐,+)′𝐷(𝛽 − 𝑏𝑐,+) | ℐ−] = 𝐸[(𝛼− 𝑎+)′𝑆 ′𝐷𝑆(𝛼− 𝑎+) | ℐ−]

= 𝐸[(𝛼− 𝑎+)′𝑀 ′𝑄𝐷𝑄′𝑀(𝛼− 𝑎+) | ℐ−]

= 𝐸[(𝛼− 𝑎+)′𝑀 ′𝑉𝑀(𝛼− 𝑎+) | ℐ−]

= 𝐸[(𝛼− 𝑎+)′𝑊 (𝛼− 𝑎+) | ℐ−]

Part (d): This follows from parts (a) and (b) along with the fact that (𝑃+, 𝑃−) and (𝑁+, 𝐼)

share generalized eigenvalues. Alternatively, this follows from Property 3.

Part (e): This follows because 𝑉 𝑎𝑟(𝛽𝑐 | ℐ+) = 𝑁+ is a diagonal matrix.
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10.1.10 Proof of Lemma 4

Part (a): The quantity 𝑟 is the integer such that 𝑛𝑟 = 𝜆/𝑑𝑟 < 1 but 𝑛𝑟 = 𝜆/𝑑𝑟+1 ≥ 1. Thus

we have 𝑛+
𝑖 > 1 for 𝑖 = 1, . . . , 𝑛 and 𝑛+

𝑖 = 1 for 𝑖 = 𝑟 + 1, . . . , 𝑛, so that rk(𝐼 −𝑁+) = 𝑟.

Then, since 𝑆 is nonsingular, we have rk(𝑃−−𝑃+) = rk(𝑆𝑃−𝑆
′−𝑆𝑃+𝑆

′) = rk(𝐼−𝑁+) =

𝑟.

Part (b): If rk(𝑊 ) = ℓ, then each of 𝑑𝑛, 𝑑𝑛−1, . . . , 𝑑ℓ+1 must equal zero, and for any 𝑖 such

that 𝑑𝑖 = 0, it must also be that 𝑛+
𝑖 = 1. Then 𝑟 = rk(𝐼 −𝑁+) ≤ ℓ = rk(𝑊 ).

Part (c): This follows directly from the definition of 𝛿+𝑖 in Theorem 1.

Part (d): This follows from Lemma 3 part (e), since for each 𝑖 such that 𝑛+
𝑖 = 1, we have

𝐼(𝛽𝑖,𝑐, 𝑏𝑖,𝑐,+ | ℐ−) = 0.

Part (e):

In the fixed 𝜅 formulation, suppose that 𝑟 = 1. Then 𝜆 = 𝑏−2𝜅𝑑1, so that 𝑑1 > 𝜆. Thus the

algorithm of Theorem 2 will always terminate at 𝑟 = 1 if it did not terminate earlier.

In the fixed 𝜆 formulation, set 𝜆 = 𝑑1 + 1. Then 𝑟 = 0.

10.1.11 Proof of Lemma 5

If 𝑃− is diagonal, then the Cholesky factor 𝐿 is also diagonal. Along with 𝑊 diagonal, this

implies that 𝑉 = 𝐿′𝑊𝐿 is diagonal, so that the matrix of eigenvectors 𝑄 is equal to the

identity.

Then 𝑆 = 𝑄′𝑀 = 𝑀 and 𝑃+ = 𝑅𝑁+𝑅′ = 𝐿𝑁+𝐿′ = 𝑁+𝑃−. Rearranging, we get

(𝑁+)−1 = 𝑃−𝑃+. Rearranging, we get 1
𝑛+
𝑖

=
𝑃𝑖𝑖,−
𝑃𝑖𝑖,+

.
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10.1.12 Proof of Lemma 6

Let 𝛽𝑖,𝑐 = 𝛽𝑖,𝑐 + 𝜀𝑖,𝑐 with 𝜀𝑖,𝑐 ∼ 𝑁(0, (1/𝑛+
𝑖 − 1)−1), as in the Lemma. Recall from

Lemma 3 that 𝐸[𝛽𝑖,𝑐 | ℐ−] = 𝑏𝑖,𝑐,− and Var(𝛽𝑖,𝑐 | ℐ−) = 1. Then standard signal extraction

formulas imply 𝑏𝑖,𝑐,+ = 𝑏𝑖,𝑐,− + 𝐾𝑐(𝛽𝑖,𝑐 − 𝑏𝑖,𝑐,−) where:

𝐾𝑐 = (1 + (1/𝑛+
𝑖 − 1)−1)−1 = (1 − 𝑛+

𝑖 )

Plugging this in yields the result.

10.1.13 Proof of Theorem 3

This follows directly from Definition 2 and Lemma 6.

10.1.14 Proof of Theorem 4

Let 𝑂+ solve the 𝐵-transformed problem, and recall that we have 𝐵 nonsingular. Now

consider the objective function of the reference problem:

𝒪 = 𝑡𝑟(𝑊𝑃+) + 𝜆 (log |𝑃−| − log |𝑃+|)

= 𝑡𝑟(𝐵′(𝐵′)−1𝑊𝐵−1𝐵𝑃+) + 𝜆 (log |𝐵𝑃−𝐵
′| − log |𝐵𝑃+𝐵

′|)

= 𝑡𝑟(𝑉 𝐵𝑃+𝐵
′) + 𝜆 (log |𝑂−| − log |𝐵𝑃+𝐵

′|)

By considering 𝑃+ = 𝐵−1𝑂+𝐵
′−1, it is clear that if 𝑂+ is optimal for the 𝐵-transformed

objective function, 𝑃+ will be optimal for the reference problem, as long as the constraints

are the same. To see that they are the same, notice that since 𝐵 is nonsingular, 𝑂+ ≥

0 ⇐⇒ 𝑃+ ≥ 0 and 𝑃− − 𝑃+ ≥ 0 ⇐⇒ 𝐵(𝑃− − 𝑃+)𝐵′ = 𝑂− −𝑂+ ≥ 0.
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10.1.15 Proof of Lemma 7

This follows directly from the fact that the product of nonsingular matrices is nonsingular.

10.1.16 Proof of Lemma 8

This follows directly from Lemma 7 along with Definitions 8, 9, and 10

10.1.17 Proof of Lemma 9

This tautology follows directly from the definition of 𝑎+ as a conditional expectation.

10.1.18 Proof of Lemma 10

Part (a):

Since rk(𝑍) = 𝑚, we have 𝑟 = rk(𝑃− − 𝑃+) ≤ rk(Λ−1) ≤ 𝑚

Part (b):

Since rk(𝑍) = 𝑚 and rk(Λ−1) = 𝑚, we also have rk(𝑍 ′Λ−1𝑍) = 𝑚, but rk(𝑍 ′Λ−1𝑍) =

rk(𝑃− − 𝑃+) = 𝑟.

10.1.19 Proof of Theorem 5

Given the innovation representation 𝑣+ = 𝑍𝛼 + 𝜀 − 𝑍𝑎− where 𝜀 ∼ 𝑁(0,Λ), we have

that the posterior information set is ℐ+ = ℐ− ∪ {𝑣+}, that 𝛼 | ℐ− ∼ 𝑁(𝑎−, 𝑃−), and that

𝛼 and 𝑣+ are jointly Gaussian. Theorem 5 is then simply a statement of the form of the

conditional distribution of jointly Gaussian random vectors.
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10.2 Appendix B: rationally inattentive price-setting

The rationally inattentive price-setting problem supposes that monopolistically competitive

firms cannot pay perfect attention to the shocks that determine the optimal price for their

differentiated good. In order to minimize the expected loss in (log quadratically approxi-

mated) prices, they choose how to allocate attention.

The basic rational inattention result of MW is that more attention is paid to shocks that are

more important or more volatile. The former characteristic is captured in the loss function

and the latter is captured by the shock’s variance. In this paper, we have refined this result

and shown that it should be applied to the “canonical synthetic shocks” rather than the

original, or “fundamental”, shocks. In MW, these two types of shocks are required to be

identical, but in general this requirement imposes suboptimal behavior.

To understand why these shocks are treated differently, it is important to recall that a ra-

tionally inattentive agent has access to the complete data but, in optimally processing the

information, they may choose only certain components of the data to pay attention to,

with any remainder ignored. The agent’s problem can be thought of as (1) selecting the

components that matter to them, and (2) selecting the amount of attention to pay to each

component. The canonical synthetic shocks provide exactly the decomposition that solves

the former problem. It can be instructive to consider the inattentive agent as receiving a par-

ticular noisy signal of the data, but this is only appropriate in the context of the optimally

chosen, canonical, shocks.

In the price-setting problem, even though the space of fundamental shocks is two-dimensional,

the space of canonical synthetic shocks is only one dimensional, because as the agent pro-

cesses information, there is only one variable that is of interest to them: the optimal price.

The agent, assumed to have access to the complete data, only processes information about

that relevant combination.
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10.2.1 Setup

The firm’s profit function is 𝜋(𝑃𝑖𝑡, 𝑃𝑡, 𝑌𝑡, 𝑍𝑖𝑡), and the log quadratic approximation is

𝜋̃(𝑝𝑖𝑡, 𝑝𝑡, 𝑦𝑡, 𝑧𝑖𝑡).

Aggregate demand is given by 𝑄𝑡 = 𝑃𝑡𝑌𝑡 or 𝑞𝑡 = 𝑝𝑡 + 𝑦𝑡

Under perfect information, optimal price-setting is:

𝑝◇𝑖𝑡 =
𝜋̂14

|𝜋̂11|
𝑧𝑖𝑡 +

𝜋̂13

|𝜋̂11|
𝑞𝑖𝑡 +

(︂
1 − 𝜋̂13

|𝜋̂11|
𝑧𝑖𝑡

)︂
𝑝𝑡

In equilibrium 𝑝𝑡 = 𝑞𝑡.

Under rational inattention, 𝑝*𝑖𝑡 = 𝐸[𝑝◇𝑖𝑡 | ℐ𝑡], and the objective is to minimize the loss in

profits due to inattention. This can be written as:

min 𝜋̃(𝑝◇𝑖𝑡, 𝑝𝑡, 𝑦𝑡, 𝑧𝑖𝑡) − 𝜋̃(𝑝*𝑖𝑡, 𝑝𝑡, 𝑦𝑡, 𝑧𝑖𝑡)

and this can be simplified to:

min
|𝜋̂11|

2
𝐸 [(𝑝◇𝑖𝑡 − 𝑝*𝑖𝑡) | ℐ𝑡]

To ease notation, define 𝜁0 = |𝜋̂11|
2

, 𝜁𝑧 = 𝜋̂14

|𝜋̂11| , and 𝜁𝑞 = 𝜋̂13

|𝜋̂11| .

Guess and verify approach: guess that 𝑝𝑡 = 𝛾𝑞𝑡. Then:

𝑝*𝑖𝑡 = 𝐸 [𝜁𝑧𝑧𝑖𝑡 + (𝛾 + (1 − 𝛾)𝜁𝑞) 𝑞𝑡 | ℐ𝑡]
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With this guess, the RI-LQG tracking problem can be defined by:

𝛼 =

⎡⎢⎣𝑧𝑖𝑡
𝑞𝑡

⎤⎥⎦ , 𝑊 =
|𝜋̂11|

2
𝑤𝑤′, 𝑤 =

⎡⎢⎣𝑤𝑧

𝑤𝑞

⎤⎥⎦
where 𝑤𝑧 = 𝜁𝑧 and 𝑤𝑞 = 𝛾 + (1 − 𝛾)𝜁𝑞.

10.2.2 Solutions

General solution In the general case, we proceed as usual. First we solve the fixed

marginal cost problem, according to Theorem 1, and then we solve the fixed capacity prob-

lem, according to Theorem 2.

Fixed marginal cost

𝐿′𝑊𝐿 =

⎡⎢⎣𝜎𝑧 0

0 𝜎𝑞

⎤⎥⎦ 𝜁0𝑤𝑤
′

⎡⎢⎣𝜎𝑧 0

0 𝜎𝑞

⎤⎥⎦ = 𝜁0

⎡⎢⎣𝜎𝑧𝑤𝑧

𝜎𝑞𝑤𝑞

⎤⎥⎦[︂
𝜎𝑧𝑤𝑧 𝜎𝑞𝑤𝑞

]︂

Let 𝑞 = 𝐿′𝑤
‖𝐿′𝑤‖ = 1√

𝜎2
𝑧𝑤

2
𝑧+𝜎2

𝑞𝑤
2
𝑞

[︂
𝜎𝑧𝑤𝑧 𝜎𝑞𝑤𝑞

]︂
so that ‖𝑞‖ =

√
𝜎2
𝑧𝑤

2
𝑧+𝜎2

𝑞𝑤
2
𝑞√

𝜎2
𝑧𝑤

2
𝑧+𝜎2

𝑞𝑤
2
𝑞

= 1. Then we

have:

𝐿′𝑊𝐿 = 𝑞
(︁
𝜁0(𝜎

2
𝑧𝑤

2
𝑧 + 𝜎2

𝑞𝑤
2
𝑞)⏟  ⏞  

≡𝑑1

)︁
𝑞′ =

[︂
𝑞 𝑞⊥

]︂
⏟  ⏞  

𝑄

⎡⎢⎣𝑑1 0

0 0

⎤⎥⎦
⏟  ⏞  

𝐷

⎡⎢⎣ 𝑞′

𝑞⊥
′

⎤⎥⎦
⏟  ⏞  

𝑄′

Now, 𝛿+1 = max{𝑑1/𝜆, 1}, 𝑛+
1 = min{𝜆/𝑑1, 1} and 𝛿+2 = 𝑛+

2 = 1. The latter result implies

the agent will never pay attention to a second component. This means that the rank of the

solution will be at most 𝑟 = 1, although it is possible that the agent will choose to not pay

any attention at all (𝑟 = 0).
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Next, 𝑆 = 𝑄′𝑀 =

⎡⎢⎣ 𝑞′

𝑞⊥
′

⎤⎥⎦
⎡⎢⎣1/𝜎𝑧 0

0 1/𝜎𝑞

⎤⎥⎦ =

⎡⎢⎣𝑤′/‖𝐿′𝑤‖

𝑞⊥
′
𝑀

⎤⎥⎦ =

⎡⎢⎣𝑠′1
𝑠′2

⎤⎥⎦.

Then we can compute the optimal posterior:

𝑃−1
+ = 𝑆 ′∆+𝑆 =

[︂
𝑠1 𝑠2

]︂⎡⎢⎣𝛿+1 0

0 1

⎤⎥⎦
⎡⎢⎣𝑠′1
𝑠′2

⎤⎥⎦
The weight matrix 𝐾 = 𝐼 − 𝑃+𝑃

−1
− = 𝑅(1 −𝑁+)𝑆.

Of the left generalized eigenvectors 𝑠′𝑖 of the matrix pencil (𝑃+, 𝑃−), only 𝑠′1 = 𝑤′/‖𝐿′𝑤‖

is associated with a nonzero generalized eigenvalue. As described above, this vector is also

a left eigenvector of the weight matrix 𝐾 associated with the eigenvalue 1−𝑛+
𝑖 . Of course

any scalar multiple of an eigenvector is also an eigenvector, so that we can write:

𝑤′𝐾 = (1 − 𝑛+
1 )𝑤′

The fundamental representation is:

𝑦𝑓 = 𝛼𝑡 + 𝜀𝑓 , 𝜀𝑓 ∼ 𝑁(0,Λ𝑓 ) with Λ−1
𝑓 = 𝑆 ′(∆+ − 𝐼)𝑆

This is a not a feasible representation, because 𝑆 ′(∆+ − 𝐼)𝑆 is neither full rank nor can it

be written in the form required by Definition 12. Instead, we can construct the canonical

representation:

𝑦𝑐 = 𝑆𝛼𝑡 + 𝜀𝑐, 𝜀𝑐 ∼ 𝑁(0,Λ𝑐) with Λ−1
𝑐 = ∆+ − 𝐼

This is (as always) a feasible representation, but it is not proper since 𝛿+2 −1 = 0 so that the

error due to inattention has infinite variance for the second component. Thus we instead
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use the reduced canonical representation:

𝑦𝑟 = 𝑠′1𝛼𝑡 + 𝜀𝑟, 𝜀𝑟 = 𝜀1,𝑐 ∼ 𝑁(0, (𝛿+1 − 1)−1)

the associated innovation representation is:

𝑣𝑟 = 𝑦𝑟 − 𝑠′1𝑎−

and the associated weight matrix is

𝐾𝑟 = 𝑠1(1 + (𝛿+1 − 1)−1)−1 = (1 − 𝑛+
1 )𝑠1

where 𝑠′1𝐾𝑟 = (1 − 𝑛+
1 ) and 𝑤′𝐾𝑟 = (1 − 𝑛+

1 )‖𝐿′𝑤‖

Now we can construct the posterior:

𝑎+ = 𝑎− + 𝐾𝑟𝑣𝑟

= 𝑎− + (1 − 𝑛+
1 )𝑠1(𝑠1𝛼𝑡 + 𝜀𝑟 − 𝑠′1𝑎−)

= (𝐼 − (1 − 𝑛1)
+𝑠1𝑠

′
1)𝑎− + (1 − 𝑛+

1 )𝑠1𝑠
′
1𝛼𝑡 + (1 − 𝑛+

1 )𝑠1𝜀𝑟
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We can then construct the posterior of interest:

𝑝*𝑖𝑡 = 𝑤′𝑎+

= 𝑤′(𝑎− + 𝐾𝑟𝑣𝑟)

= 𝑤′ [︀(𝐼 − (1 − 𝑛1)
+𝑠1𝑠

′
1)𝑎− + (1 − 𝑛+

1 )𝑠1𝑠
′
1𝛼𝑡 + (1 − 𝑛+

1 )𝑠1𝜀𝑟
]︀

= (𝑤′ − (1 − 𝑛1)
+𝑤′𝑠1𝑠

′
1)𝑎− + (1 − 𝑛+

1 )𝑤′𝑠1𝑠
′
1𝛼𝑡 + (1 − 𝑛+

1 )𝑤′𝑠1𝜀𝑟

= (𝑤′ − (1 − 𝑛1)
+𝑤′)𝑎− + (1 − 𝑛+

1 )𝑤′𝛼𝑡 + (1 − 𝑛+
1 )‖𝐿′𝑤‖𝜀𝑟

= (1 − (1 − 𝑛1)
+)𝑤′𝑎− + (1 − 𝑛+

1 )𝑤′𝛼𝑡 + (1 − 𝑛+
1 )‖𝐿′𝑤‖𝜀𝑟

= 𝑛+
1 𝑝− + (1 − 𝑛+

1 )𝑝◇𝑖𝑡 + (1 − 𝑛+
1 )‖𝐿′𝑤‖𝜀𝑟

In this case, the prior is 𝑎− = 0, and 𝑝◇𝑖𝑡 = 𝑤′𝛼𝑡 = 𝑤𝑧𝑧𝑖𝑡 +𝑤𝑞𝑞𝑡. To find the aggregate price

level, integrate over firms:

𝑝𝑡 =

∫︁
𝐼

𝑝*𝑖𝑡𝑑𝑖

=

∫︁
𝐼

(1 − 𝑛+
1 )𝑤𝑧𝑧𝑖𝑡𝑑𝑖 +

∫︁
𝐼

(1 − 𝑛+
1 )𝑤𝑞𝑞𝑡𝑑𝑖 +

∫︁
𝐼

(1 − 𝑛+
1 )‖𝐿′𝑤‖𝜀𝑟𝑑𝑖

= (1 − 𝑛+
1 )𝑤𝑞𝑞𝑡

Recall that our guess was 𝑝𝑡 = 𝛾𝑞𝑡; this result confirms our guess, with 𝛾 = (1 − 𝑛+
1 )𝑤𝑞.

However, 𝑤𝑞 is a function of 𝛾, so the full solution yet requires solving for 𝛾.

First, there is an equilibrium with 𝛾 = 0 if 𝜁0(𝜎2
𝑧𝜁

2
𝑧 + 𝜎2

𝑞𝜁
2
𝑞 ) ≤ 𝜆. Since 𝑤𝑞 > 0 regardless

of 𝛾, then 𝛾 = 0 requires 𝑛+
1 = 1, i.e. it requires all agents to collect no information

whatsoever. For this to be an equilibrium, it requires that 𝑑1 = 𝜁0(𝜎
2
𝑧𝑤

2
𝑧 + 𝜎2

𝑞𝑤
2
𝑞) ≤ 𝜆.

Since 𝑤𝑧 = 𝜁𝑧 and 𝑤𝑞 = 𝛾 + (1 − 𝛾)𝜁𝑧, requiring that 𝑑1 ≤ 𝜆 when 𝛾 = 0 is equivalent to

the condition given above.

We can find nonzero equilibria by solving for 𝛾; this is difficult to do analytically, but

symbolic math software indicates that in the domain of interest, there is a unique real
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solution along with a conjugate pair of complex solutions. Numerical solution methods

find agreement with the unique real solution.

Fixed capacity

Given the solution to the fixed marginal cost formulation above, we can find the solution to

the fixed capacity formulation of the problem by applying Theorem 2 to find the shadow

marginal cost associated with capacity constraint.

From above, we know that 𝑟 ≤ 1, but because the problem is not degenerate we also know

that 𝑟 ≥ 1. Thus it must be that 𝑟 = 1 and so we can easily apply Theorem 2 to yield:

𝜆 = 2−2𝜅𝑑1

Therefore, 𝛿+1 = max{𝑑1/𝜆, 1} = max{22𝜅, 1} = 22𝜅, and so 𝑛+
1 = 2−2𝜅. Then:

𝛾 = (1 − 𝑛+
1 )𝑤𝑞

= (1 − 2−2𝜅)(𝛾 + (1 − 𝛾)𝜁𝑞)

=
(1 − 2−2𝜅)𝜁𝑞

(1 − 2−1𝜅)𝜁1 + 2−2𝜅

=
𝜁𝑞

(22𝜅 − 1)−1 + 𝜁𝑞

The fixed capacity version is often easy to solve in the case 𝑟 = 1 because it can tie down

the posterior covariance matrix based only on the parameter 𝜅. This was the case here,

where we were able to substitute 𝑛+
1 = 2−2𝜅 whereas in the fixed marginal capacity case

(and assuming an interior solution) we had 𝑛+
1 = 𝜆/[𝜁0(𝜎

2
𝑧𝑤

2
𝑧 + 𝜎2

𝑞𝑤
2
𝑞)].

Independence assumption We can also proceed here as usual, but using the alternate

weight matrix 𝑊𝐼 = diag{𝑤2
𝑧 , 𝑤

2
𝑞}. We first apply Theorem 1 to solve the fixed marginal

cost case and then apply Theorem 2 to solve the fixed capacity case.
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Fixed marginal cost

𝐿′𝑊𝐿 =

⎡⎢⎣𝜎𝑧 0

0 𝜎𝑞

⎤⎥⎦ 𝜁0

⎡⎢⎣𝑤2
𝑧 0

0 𝑤2
𝑞

⎤⎥⎦
⎡⎢⎣𝜎𝑧 0

0 𝜎𝑞

⎤⎥⎦ = 𝜁0

⎡⎢⎣𝜎2
𝑧𝑤

2
𝑧 0

0 𝜎2
𝑞𝑤

2
𝑞

⎤⎥⎦
Then 𝑄 = 𝐼 and 𝑑𝑖 = 𝜁0𝜎

2
𝑖𝑤

2
𝑖 (where 𝑖 ∈ {𝑧, 𝑞}). As usual, we have:

𝛿+𝑖 = max{𝑑𝑖/𝜆, 1}

𝑛+
𝑖 = min{𝜆/𝑑𝑖, 1}

The rank of the solution will be 𝑟 ∈ {0, 1, 2} because the agent may choose to pay attention

to either, both, or neither of the components.

Now 𝑆 = 𝑄′𝑀 =

⎡⎢⎣1/𝜎𝑧 0

0 1/𝜎𝑞

⎤⎥⎦ =

⎡⎢⎣𝑠′1
𝑠′2

⎤⎥⎦ with 𝑠𝑖 = 1
𝜎𝑖
𝑒𝑖 (and 𝑒𝑖 is the 𝑖-th standard basis

element). This implies that the canonical synthetic target is nothing more than a scaled

version of the fundamental target; in fact, this was essentially the goal of the independence

assumption.

We will abuse notation somewhat to now interpret the index as 𝑖 = 1, 2 where 𝑑1 =

max{𝑑𝑧, 𝑑𝑞} and 𝑑2 = min{𝑑𝑧, 𝑑𝑞}; this accords with the usual practice of listing these

generalized eigenvalues in nonincreasing order.

Then we can compute the optimal posterior:

𝑃−1
+ =

⎡⎢⎣𝛿+1 /𝜎2
1 0

0 𝛿+2 /𝜎
2
2

⎤⎥⎦
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or

𝑃+ =

⎡⎢⎣𝑛+
1 𝜎

2
1 0

0 𝑛+
2 𝜎

2
2

⎤⎥⎦
The weight matrix is 𝐾 = 𝐼−𝑃+𝑃

−1
− = 𝑅(𝐼−𝑁+)𝑆. Because 𝑅, 𝑆, and 𝑁+ are diagonal,

they commute, so that we have simply 𝐾 = (𝐼 −𝑁+). We can then write:

𝑤′𝐾 =

[︂
𝑤1𝑛

+
1 𝑤2𝑛

+
2

]︂

The fundamental representation is:

𝑦𝑓 = 𝛼𝑡 + 𝜀𝑓 , 𝜀𝑓 ∼ 𝑁(0,Λ𝑓 ) with Λ−1
𝑓 = 𝑆 ′(∆+ − 𝐼)𝑆

This representation is feasible, because 𝑆 and ∆+ are diagonal and so the matrix will either

be full rank or can be written as required by Definition 12. The associated innovation

representation is:

𝑣𝑓 = 𝑦𝑓 − 𝑎−

We could still construct the canonical or reduced canonical representations in this case,

although it is unnecessary for computing the action.
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The action is:

𝑎+ = 𝑎− + 𝐾𝑣𝑓

= (𝐼 −𝐾)𝑎− + 𝐾𝑦𝑓

= (𝐼 −𝐾)𝑎− + 𝐾𝛼𝑡 + 𝐾𝜀𝑓

=

⎡⎢⎣𝑛+
1 𝑎1,− + (1 − 𝑛+

1 )(𝛼1,𝑡 + 𝜀1,𝑓 )

𝑛+
2 𝑎2,− + (2 − 𝑛+

2 )(𝛼2,𝑡 + 𝜀2,𝑓 )

⎤⎥⎦
and the posterior of interest is:

𝑝*𝑖𝑡 = 𝑤′𝑎+ =
∑︁

𝑗∈{𝑧,𝑞}

(︀
𝑤𝑗𝑛

+
𝑗 𝑎𝑗,− + 𝑤𝑖(1 − 𝑛+

𝑖 )(𝛼𝑖,𝑡 + 𝜀𝑖,𝑓 )
)︀

As before, the prior is 𝑎− = 0; aggregating over firms yields:

𝑝𝑡 =

∫︁
𝐼

𝑝*𝑖𝑡𝑑𝑖 = (1 − 𝑛+
𝑞 )𝑤𝑞𝑞𝑡

Note that this is almost identical to the result in the general case, except that here the gener-

alized eigenvalue 𝑛+
𝑞 is specific to the aggregate demand shock, whereas in the general case

it corresponded to the synthetic shock the combined both the idiosyncratic and aggregate

shocks.

Recall that 𝑛+
𝑞 = min{𝜆/𝑑𝑞, 1} with 𝑑𝑞 = 𝜁0𝜎

2
𝑞𝑤

2
𝑞 , and 𝑤𝑞 = 𝛾 + (1 − 𝛾)𝜁𝑞. Now, we can

combine these results to solve for the equilibrium value of 𝛾.

First, there is an equilibrium with 𝛾 = 0 if 𝜁0𝜎2
𝑞𝜁

2
𝑞 ≤ 𝜆. This always corresponds to an

agent paying no attention to aggregate conditions; however, the agent may still pay some

attention to idiosyncratic conditions.
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Otherwise, we can solve for 𝛾:

𝛾 = (1 − 𝑛+
𝑞 )𝑤𝑞 =

(︂
1 − 𝜆

𝜁0𝜎2
𝑞𝑤

2
𝑞

)︂
𝑤𝑞

= . . .

=
±
√︁

𝜆(1 − 𝜁𝑞) + 𝜁0𝜎2
𝑞/4 + (0.5 − 𝜁𝑞)

√︀
𝜁0𝜎2

𝑞

(1 − 𝜁𝑞)
√︀
𝜁0𝜎2

𝑞

Both of these roots may be valid and may, moreover, coexist with the 𝛾 = 0 equilibrium,

so that there may be as many as three equilibria.

Fixed capacity

As before, we know that in the fixed capacity case 𝑟 ≥ 1. This means that we have:

𝜆 =

⎧⎪⎪⎨⎪⎪⎩
(2−2𝜅𝑑1𝑑2)

1/2
𝑟 = 2

𝜆 = 2−2𝜅𝑑1 𝑟 = 1

and recall that we have stipulated 𝑑1 ≥ 𝑑2, where 𝑑𝑖 = 𝜎2
𝑖𝑤

2
𝑖 . We have 𝑟 = 1 if 𝑑2 ≤

𝜆 = 2−2𝜅𝑑1 and 𝑟 = 2 otherwise; i.e. the agent will pay attention to both idiosyncratic and

aggregate conditions as long as the canonical loss weights are relatively close together, and

will pay attention to only one component if they are far enough apart.

Now we can compute 𝛿+𝑖 :

𝛿+1 = max

{︂
𝑑1
𝜆
, 1

}︂
=

⎧⎪⎪⎨⎪⎪⎩
22𝜅 𝑑2 ≤ 𝜆

2𝜅
(︁

𝑑1
𝑑2

)︁1/2

𝑑2 > 𝜆

=

⎧⎪⎪⎨⎪⎪⎩
22𝜅 𝑑2 ≤ 2−2𝜅𝑑1

2𝜅 𝜎1𝑤1

𝜎2𝑤2
𝑑2 > 2−2𝜅𝑑1
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𝛿+2 = max

{︂
𝑑2
𝜆
, 1

}︂
=

⎧⎪⎪⎨⎪⎪⎩
1 𝑑2 ≤ 𝜆

2𝜅
(︁

𝑑2
𝑑1

)︁1/2

𝑑2 > 𝜆

=

⎧⎪⎪⎨⎪⎪⎩
1 𝑑2 ≤ 2−2𝜅𝑑1

2𝜅 𝜎2𝑤2

𝜎1𝑤1
𝑑2 > 2−2𝜅𝑑1

To determine the equilibrium value of 𝛾, note that we still have 𝑝𝑡 = (1−𝑛+
𝑞 )𝑤𝑞𝑞𝑡, but now

there are three cases:

𝛿+𝑞 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
22𝜅 𝑑𝑧 ≤ 2−2𝜅𝑑𝑞

2𝜅
(︁

𝑑𝑞
𝑑𝑧

)︁1/2

𝑑𝑞 > 𝑑𝑧 > 2−2𝜅𝑑𝑞 or 𝑑𝑧 > 𝑑𝑞 > 2−2𝜅𝑑𝑧

1 𝑑𝑞 ≤ 2−2𝜅𝑑𝑧

we can restate the interior (middle) condition as min{𝑑𝑧, 𝑑𝑞} > 2−2𝜅 max{𝑑𝑧, 𝑑𝑞} or as

2−2𝜅𝑑𝑧 < 𝑑𝑞 < 22𝜅𝑑𝑧, and then we have:

𝛿+𝑞 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
22𝜅 𝑑𝑞 ≥ 22𝜅𝑑𝑧

2𝜅
(︁

𝑑𝑞
𝑑𝑧

)︁1/2

2−2𝜅𝑑𝑧 < 𝑑𝑞 < 22𝜅𝑑𝑧

1 𝑑𝑞 ≤ 2−2𝜅𝑑𝑧

This gives bounds for 𝑑𝑞 based on 𝜅 and 𝑑𝑧 that determine whether aggregate conditions

are paid attention to (the top two options) and, if so, whether idiosyncratic conditions are

then also paid attention to (the middle option).
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For an interior solution, we compute 𝛾 as:

𝛾 = (1 − 𝑛+
𝑞 )𝑤𝑞

=

(︂
1 − 2−𝜅𝜎𝑧𝑤𝑧

𝜎𝑞𝑤𝑞

)︂
𝑤𝑞

= 𝑤𝑞 − 2−𝜅𝑤𝑧
𝜎𝑧

𝜎𝑞

= 𝛾 + (1 − 𝛾)𝜁𝑞 − 2−𝜅𝜁𝑧
𝜎𝑧

𝜎𝑞

= 1 − 2−𝜅𝜎𝑞𝜁𝑧
𝜎𝑞𝜁𝑞

We must of course check that this 𝛾 is consistent with an interior solution.

Note: Our formulation is notationally different from MW, but we can rewrite it in their

terms.

Given an interior solution, we can compute the loss weight as:

𝑤𝑞 = 𝛾 + (1 − 𝛾)𝜁𝑞

=

(︂
1 − 2−𝜅𝜎𝑞𝜁𝑧

𝜎𝑞𝜁𝑞

)︂
+

(︂
2−𝜅𝜎𝑞𝜁𝑧

𝜎𝑞𝜁𝑞

)︂
𝜁𝑞

= 1 − (1 − 𝜁𝑞)2
−𝜅𝜎𝑞𝜁𝑧

𝜎𝑞𝜁𝑞

And we have an interior solution if:

2−2𝜅𝑑𝑧 < 𝑑𝑞 < 22𝜅𝑑𝑧

2−2𝜅𝜎2
𝑧𝜁

2
𝑧 < 𝜎2

𝑞𝑤
2
𝑞 < 22𝜅𝜎2

𝑧𝜁
2
𝑧

2−𝜅 <
𝜎𝑞𝑤𝑞

𝜎𝑧𝜁𝑧
< 2𝜅
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Now:

𝜎𝑞𝑤𝑞

𝜎𝑧𝜁𝑧
=

𝜎𝑞

𝜎𝑧𝜁𝑧
− (1 − 𝜁𝑞)2

−𝜅 1

𝜁𝑞

=
𝜎𝑞

𝜎𝑧𝜁𝑧
−
(︂

1

𝜁𝑞
− 1

)︂
2−𝜅

=
1

𝜁𝑞

𝜎𝑞𝜁𝑞
𝜎𝑧𝜁𝑧

−
(︂

1 − 𝜁𝑞
𝜁𝑞

)︂
2−𝜅

=
1

𝜁𝑞

(︂
𝜎𝑞𝜁𝑞
𝜎𝑧𝜁𝑧

− 2−𝜅(1 − 𝜁𝑞)

)︂

Then we can write the condition as:

2−𝜅 <
1

𝜁𝑞

(︂
𝜎𝑞𝜁𝑞
𝜎𝑧𝜁𝑧

− 2−𝜅(1 − 𝜁𝑞)

)︂
< 2𝜅

2−𝜅𝜁𝑞 + 2−𝜅(1 − 𝜁𝑞) <
𝜎𝑞𝜁𝑞
𝜎𝑧𝜁𝑧

< 2𝜅𝜁𝑞 + 2−𝜅(1 − 𝜁𝑞)

or finally as:

2−𝜅 <
𝜎𝑞𝜁𝑞
𝜎𝑧𝜁𝑧

< 2−𝜅 + (2𝜅 − 2−𝜅)𝜁𝑞

This is identical to MW’s condition for an interior solution, which is:

𝜎𝑞𝜁𝑞
𝜎𝑧𝜁𝑧

∈
(︀
2−𝜅, 2−𝜅 + (2𝜅 − 2−𝜅)𝜁𝑞

)︀
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